/[MITgcm]/MITgcm/pkg/generic_advdiff/gad_som_adv_r.F
ViewVC logotype

Contents of /MITgcm/pkg/generic_advdiff/gad_som_adv_r.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.2 - (show annotations) (download)
Wed Aug 15 22:35:41 2007 UTC (16 years, 10 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint59g, checkpoint59f, checkpoint59l, checkpoint59i, checkpoint59h, checkpoint59k, checkpoint59j
Changes since 1.1: +13 -13 lines
Define loop range indices for computing vertical advection tendency
 as parameters (iMinAdvR,iMaxAdvR,jMinAdvR,jMaxAdvR).
and do the calculation in the interior (no overlap) only to save CPU time.
note: 1) for now, only implemented for SOM advection
      2) can recover old version (if needed) by changing only 1 file: GAD.h

1 C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_som_adv_r.F,v 1.1 2007/01/16 04:38:34 jmc Exp $
2 C $Name: $
3
4 #include "GAD_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: GAD_SOM_ADV_R
8
9 C !INTERFACE: ==========================================================
10 SUBROUTINE GAD_SOM_ADV_R(
11 I bi,bj,k, kUp, kDw,
12 I deltaTloc, rTrans, maskUp,
13 U sm_v, sm_o, sm_x, sm_y, sm_z,
14 U sm_xx, sm_yy, sm_zz, sm_xy, sm_xz, sm_yz,
15 U alp, aln, fp_v, fn_v, fp_o, fn_o,
16 U fp_x, fn_x, fp_y, fn_y, fp_z, fn_z,
17 U fp_xx, fn_xx, fp_yy, fn_yy, fp_zz, fn_zz,
18 U fp_xy, fn_xy, fp_xz, fn_xz, fp_yz, fn_yz,
19 O wT,
20 I myThid )
21
22 C !DESCRIPTION:
23 C Calculates the area integrated vertical flux due to advection
24 C of a tracer using
25 C--
26 C Second-Order Moments Advection of tracer in Z-direction
27 C ref: M.J.Prather, 1986, JGR, 91, D6, pp 6671-6681.
28 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
29 C The 3-D grid has dimension (Nx,Ny,Nz) with corresponding
30 C velocity field (U,V,W). Parallel subroutine calculate
31 C advection in the X- and Y- directions.
32 C The moment [Si] are as defined in the text, Sm refers to
33 C the total mass in each grid box
34 C the moments [Fi] are similarly defined and used as temporary
35 C storage for portions of the grid boxes in transit.
36 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
37
38 C !USES: ===============================================================
39 IMPLICIT NONE
40 #include "SIZE.h"
41 #include "EEPARAMS.h"
42 #include "PARAMS.h"
43 #include "SURFACE.h"
44 c #include "GRID.h"
45 #include "GAD.h"
46
47 C !INPUT PARAMETERS: ===================================================
48 C bi,bj :: tile indices
49 C k :: vertical level
50 C kUp :: index into 2 1/2D array, toggles between 1 and 2
51 C kDw :: index into 2 1/2D array, toggles between 2 and 1
52 C rTrans :: vertical volume transport
53 C maskUp :: 2-D array mask for W points
54 C myThid :: my Thread Id. number
55 INTEGER bi,bj,k, kUp, kDw
56 _RL deltaTloc
57 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
58 _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
59 c _RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
60 INTEGER myThid
61
62 C !OUTPUT PARAMETERS: ==================================================
63 C sm_v :: volume of grid cell
64 C sm_o :: tracer content of grid cell (zero order moment)
65 C sm_x,y,z :: 1rst order moment of tracer distribution, in x,y,z direction
66 C sm_xx,yy,zz :: 2nd order moment of tracer distribution, in x,y,z direction
67 C sm_xy,xz,yz :: 2nd order moment of tracer distr., in cross direction xy,xz,yz
68 C wT :: vertical advective flux
69 _RL sm_v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
70 _RL sm_o (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
71 _RL sm_x (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
72 _RL sm_y (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
73 _RL sm_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
74 _RL sm_xx (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
75 _RL sm_yy (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
76 _RL sm_zz (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
77 _RL sm_xy (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
78 _RL sm_xz (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
79 _RL sm_yz (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
80 _RL alp (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
81 _RL aln (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
82 _RL fp_v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
83 _RL fn_v (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
84 _RL fp_o (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
85 _RL fn_o (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
86 _RL fp_x (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
87 _RL fn_x (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
88 _RL fp_y (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
89 _RL fn_y (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
90 _RL fp_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
91 _RL fn_z (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
92 _RL fp_xx(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
93 _RL fn_xx(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
94 _RL fp_yy(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
95 _RL fn_yy(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
96 _RL fp_zz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
97 _RL fn_zz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
98 _RL fp_xy(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
99 _RL fn_xy(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
100 _RL fp_xz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
101 _RL fn_xz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
102 _RL fp_yz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
103 _RL fn_yz(1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
104 _RL wT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
105
106 #ifdef GAD_ALLOW_SOM_ADVECT
107 C !LOCAL VARIABLES: ====================================================
108 C i,j :: loop indices
109 C wLoc :: volume transported (per time step)
110 _RL two, three
111 PARAMETER( two = 2. _d 0 )
112 PARAMETER( three = 3. _d 0 )
113 INTEGER i,j
114 INTEGER km1
115 _RL wLoc, alf1, alf1q, alpmn
116 _RL alfp, alpq, alp1, locTp
117 _RL alfn, alnq, aln1, locTn
118 CEOP
119
120 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
121 C--- part.1 : calculate flux for all moments
122 DO j=jMinAdvR,jMaxAdvR
123 DO i=iMinAdvR,iMaxAdvR
124 wLoc = rTrans(i,j)*deltaTloc
125 C-- Flux from (k) to (k-1) when W>0 (i.e., take upper side of box k)
126 C- note: Linear free surface case: this takes care of w_surf advection out
127 C of the domain since for this particular case, rTrans is not masked
128 fp_v (i,j,kUp) = MAX( 0. _d 0, wLoc )
129 alp (i,j,kUp) = fp_v(i,j,kUp)/sm_v(i,j,k)
130 alpq = alp(i,j,kUp)*alp(i,j,kUp)
131 alp1 = 1. _d 0 - alp(i,j,kUp)
132 C- Create temporary moments/masses for partial boxes in transit
133 C use same indexing as velocity, "p" for positive W
134 fp_o (i,j,kUp) = alp(i,j,kUp)*
135 & ( sm_o(i,j, k ) + alp1*sm_z(i,j, k )
136 & + alp1*(alp1-alp(i,j,kUp))*sm_zz(i,j, k )
137 & )
138 fp_z (i,j,kUp) = alpq*
139 & ( sm_z(i,j, k ) + three*alp1*sm_zz(i,j, k ) )
140 fp_zz(i,j,kUp) = alp(i,j,kUp)*alpq*sm_zz(i,j, k )
141 fp_x (i,j,kUp) = alp(i,j,kUp)*
142 & ( sm_x(i,j, k ) + alp1*sm_xz(i,j, k ) )
143 fp_y (i,j,kUp) = alp(i,j,kUp)*
144 & ( sm_y(i,j, k ) + alp1*sm_yz(i,j, k ) )
145 fp_xz(i,j,kUp) = alpq *sm_xz(i,j, k )
146 fp_yz(i,j,kUp) = alpq *sm_yz(i,j, k )
147 fp_xx(i,j,kUp) = alp(i,j,kUp)*sm_xx(i,j, k )
148 fp_yy(i,j,kUp) = alp(i,j,kUp)*sm_yy(i,j, k )
149 fp_xy(i,j,kUp) = alp(i,j,kUp)*sm_xy(i,j, k )
150 ENDDO
151 ENDDO
152 IF ( k.EQ.1 ) THEN
153 C-- Linear free surface, calculate w_surf (<0) advection term
154 km1 = 1
155 DO j=jMinAdvR,jMaxAdvR
156 DO i=iMinAdvR,iMaxAdvR
157 wLoc = rTrans(i,j)*deltaTloc
158 C- Flux from above to (k) when W<0 , surface case:
159 C take box k=1, assuming zero 1rst & 2nd moment in Z dir.
160 fn_v (i,j,kUp) = MAX( 0. _d 0, -wLoc )
161 aln (i,j,kUp) = fn_v(i,j,kUp)/sm_v(i,j,km1)
162 alnq = aln(i,j,kUp)*aln(i,j,kUp)
163 aln1 = 1. _d 0 - aln(i,j,kUp)
164 C- Create temporary moments/masses for partial boxes in transit
165 C use same indexing as velocity, "n" for negative W
166 fn_o (i,j,kUp) = aln(i,j,kUp)*sm_o(i,j,km1)
167 fn_z (i,j,kUp) = 0. _d 0
168 fn_zz(i,j,kUp) = 0. _d 0
169 fn_x (i,j,kUp) = aln(i,j,kUp)*sm_x(i,j,km1)
170 fn_y (i,j,kUp) = aln(i,j,kUp)*sm_y(i,j,km1)
171 fn_xz(i,j,kUp) = 0. _d 0
172 fn_yz(i,j,kUp) = 0. _d 0
173 fn_xx(i,j,kUp) = aln(i,j,kUp)*sm_xx(i,j,km1)
174 fn_yy(i,j,kUp) = aln(i,j,kUp)*sm_yy(i,j,km1)
175 fn_xy(i,j,kUp) = aln(i,j,kUp)*sm_xy(i,j,km1)
176 C-- Save zero-order flux:
177 wT(i,j) = fp_o(i,j,kUp) - fn_o(i,j,kUp)
178 ENDDO
179 ENDDO
180 ELSE
181 C-- Interior only: mask rTrans (if not already done)
182 km1 = k-1
183 DO j=jMinAdvR,jMaxAdvR
184 DO i=iMinAdvR,iMaxAdvR
185 wLoc = maskUp(i,j)*rTrans(i,j)*deltaTloc
186 C- Flux from (k-1) to (k) when W<0 (i.e., take lower side of box k-1)
187 fn_v (i,j,kUp) = MAX( 0. _d 0, -wLoc )
188 aln (i,j,kUp) = fn_v(i,j,kUp)/sm_v(i,j,km1)
189 alnq = aln(i,j,kUp)*aln(i,j,kUp)
190 aln1 = 1. _d 0 - aln(i,j,kUp)
191 C- Create temporary moments/masses for partial boxes in transit
192 C use same indexing as velocity, "n" for negative W
193 fn_o (i,j,kUp) = aln(i,j,kUp)*
194 & ( sm_o(i,j,km1) - aln1*sm_z(i,j,km1)
195 & + aln1*(aln1-aln(i,j,kUp))*sm_zz(i,j,km1)
196 & )
197 fn_z (i,j,kUp) = alnq*
198 & ( sm_z(i,j,km1) - three*aln1*sm_zz(i,j,km1) )
199 fn_zz(i,j,kUp) = aln(i,j,kUp)*alnq*sm_zz(i,j,km1)
200 fn_x (i,j,kUp) = aln(i,j,kUp)*
201 & ( sm_x(i,j,km1) - aln1*sm_xz(i,j,km1) )
202 fn_y (i,j,kUp) = aln(i,j,kUp)*
203 & ( sm_y(i,j,km1) - aln1*sm_yz(i,j,km1) )
204 fn_xz(i,j,kUp) = alnq *sm_xz(i,j,km1)
205 fn_yz(i,j,kUp) = alnq *sm_yz(i,j,km1)
206 fn_xx(i,j,kUp) = aln(i,j,kUp)*sm_xx(i,j,km1)
207 fn_yy(i,j,kUp) = aln(i,j,kUp)*sm_yy(i,j,km1)
208 fn_xy(i,j,kUp) = aln(i,j,kUp)*sm_xy(i,j,km1)
209 C-- Save zero-order flux:
210 wT(i,j) = fp_o(i,j,kUp) - fn_o(i,j,kUp)
211 ENDDO
212 ENDDO
213 C-- end surface/interior cases for W<0 advective fluxes
214 ENDIF
215 IF ( usingPCoords .AND. k.NE.1 .AND.
216 & .NOT.rigidLid .AND. nonlinFreeSurf.LE.0 ) THEN
217 C-- Linear free surface, but surface not @ k=1 :
218 C calculate w_surf (<0) advection term from current level
219 C moments assuming zero 1rst & 2nd moment in Z dir. ;
220 C and add to previous fluxes; note: identical to resetting fluxes
221 C since previous fluxes are zero in this case (=> let TAF decide)
222 km1 = k
223 DO j=jMinAdvR,jMaxAdvR
224 DO i=iMinAdvR,iMaxAdvR
225 wLoc = rTrans(i,j)*deltaTloc
226 IF ( k.EQ.ksurfC(i,j,bi,bj) ) THEN
227 C- Flux from (k-1) to (k) when W<0 (special surface case, take box k)
228 fn_v (i,j,kUp) = MAX( 0. _d 0, -wLoc )
229 aln (i,j,kUp) = fn_v(i,j,kUp)/sm_v(i,j,km1)
230 C- Create temporary moments/masses for partial boxes in transit
231 C use same indexing as velocity, "n" for negative W
232 fn_o (i,j,kUp) = aln(i,j,kUp)*sm_o(i,j,km1)
233 fn_x (i,j,kUp) = aln(i,j,kUp)*sm_x(i,j,km1)
234 fn_y (i,j,kUp) = aln(i,j,kUp)*sm_y(i,j,km1)
235 fn_xx(i,j,kUp) = aln(i,j,kUp)*sm_xx(i,j,km1)
236 fn_yy(i,j,kUp) = aln(i,j,kUp)*sm_yy(i,j,km1)
237 fn_xy(i,j,kUp) = aln(i,j,kUp)*sm_xy(i,j,km1)
238 C-- Save zero-order flux:
239 wT(i,j) = fp_o(i,j,kUp) - fn_o(i,j,kUp)
240 ENDIF
241 ENDDO
242 ENDDO
243 ENDIF
244
245 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
246 C--- part.2 : re-adjust moments remaining in the box
247 C take off from grid box (k): negative W(kDw) and positive W(kUp)
248 DO j=jMinAdvR,jMaxAdvR
249 DO i=iMinAdvR,iMaxAdvR
250 alf1 = 1. _d 0 - aln(i,j,kDw) - alp(i,j,kUp)
251 alf1q = alf1*alf1
252 alpmn = alp(i,j,kUp) - aln(i,j,kDw)
253 sm_v (i,j,k) = sm_v (i,j,k) - fn_v (i,j,kDw) - fp_v (i,j,kUp)
254 sm_o (i,j,k) = sm_o (i,j,k) - fn_o (i,j,kDw) - fp_o (i,j,kUp)
255 sm_z (i,j,k) = alf1q*( sm_z(i,j,k) - three*alpmn*sm_zz(i,j,k) )
256 sm_zz(i,j,k) = alf1*alf1q*sm_zz(i,j,k)
257 sm_xz(i,j,k) = alf1q*sm_xz(i,j,k)
258 sm_yz(i,j,k) = alf1q*sm_yz(i,j,k)
259 sm_x (i,j,k) = sm_x (i,j,k) - fn_x (i,j,kDw) - fp_x (i,j,kUp)
260 sm_xx(i,j,k) = sm_xx(i,j,k) - fn_xx(i,j,kDw) - fp_xx(i,j,kUp)
261 sm_y (i,j,k) = sm_y (i,j,k) - fn_y (i,j,kDw) - fp_y (i,j,kUp)
262 sm_yy(i,j,k) = sm_yy(i,j,k) - fn_yy(i,j,kDw) - fp_yy(i,j,kUp)
263 sm_xy(i,j,k) = sm_xy(i,j,k) - fn_xy(i,j,kDw) - fp_xy(i,j,kUp)
264 ENDDO
265 ENDDO
266
267 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
268 C--- part.3 : Put the temporary moments into appropriate neighboring boxes
269 C add into grid box (k): positive W(kDw) and negative W(kUp)
270 DO j=jMinAdvR,jMaxAdvR
271 DO i=iMinAdvR,iMaxAdvR
272 sm_v (i,j,k) = sm_v (i,j,k) + fp_v (i,j,kDw) + fn_v (i,j,kUp)
273 alfp = fp_v(i,j,kDw)/sm_v(i,j,k)
274 alfn = fn_v(i,j,kUp)/sm_v(i,j,k)
275 alf1 = 1. _d 0 - alfp - alfn
276 alp1 = 1. _d 0 - alfp
277 aln1 = 1. _d 0 - alfn
278 alpmn = alfp - alfn
279 locTp = alfp*sm_o(i,j,k) - alp1*fp_o(i,j,kDw)
280 locTn = alfn*sm_o(i,j,k) - aln1*fn_o(i,j,kUp)
281 sm_zz(i,j,k) = alf1*alf1*sm_zz(i,j,k) + alfp*alfp*fp_zz(i,j,kDw)
282 & + alfn*alfn*fn_zz(i,j,kUp)
283 & - 5. _d 0*(-alpmn*alf1*sm_z(i,j,k) + alfp*alp1*fp_z(i,j,kDw)
284 & - alfn*aln1*fn_z(i,j,kUp)
285 & + two*alfp*alfn*sm_o(i,j,k) + (alp1-alfp)*locTp
286 & + (aln1-alfn)*locTn
287 & )
288 sm_xz(i,j,k) = alf1*sm_xz(i,j,k) + alfp*fp_xz(i,j,kDw)
289 & + alfn*fn_xz(i,j,kUp)
290 & + three*( alpmn*sm_x(i,j,k) - alp1*fp_x(i,j,kDw)
291 & + aln1*fn_x(i,j,kUp)
292 & )
293 sm_yz(i,j,k) = alf1*sm_yz(i,j,k) + alfp*fp_yz(i,j,kDw)
294 & + alfn*fn_yz(i,j,kUp)
295 & + three*( alpmn*sm_y(i,j,k) - alp1*fp_y(i,j,kDw)
296 & + aln1*fn_y(i,j,kUp)
297 & )
298 sm_z (i,j,k) = alf1*sm_z(i,j,k) + alfp*fp_z(i,j,kDw)
299 & + alfn*fn_z(i,j,kUp)
300 & + three*( locTp - locTn )
301 sm_o (i,j,k) = sm_o (i,j,k) + fp_o (i,j,kDw) + fn_o (i,j,kUp)
302 sm_x (i,j,k) = sm_x (i,j,k) + fp_x (i,j,kDw) + fn_x (i,j,kUp)
303 sm_xx(i,j,k) = sm_xx(i,j,k) + fp_xx(i,j,kDw) + fn_xx(i,j,kUp)
304 sm_y (i,j,k) = sm_y (i,j,k) + fp_y (i,j,kDw) + fn_y (i,j,kUp)
305 sm_yy(i,j,k) = sm_yy(i,j,k) + fp_yy(i,j,kDw) + fn_yy(i,j,kUp)
306 sm_xy(i,j,k) = sm_xy(i,j,k) + fp_xy(i,j,kDw) + fn_xy(i,j,kUp)
307 ENDDO
308 ENDDO
309
310 #endif /* GAD_ALLOW_SOM_ADVECT */
311
312 RETURN
313 END

  ViewVC Help
Powered by ViewVC 1.1.22