C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/generic_advdiff/gad_fluxlimit_adv_y.F,v 1.10 2006/06/19 14:40:43 jmc Exp $ C $Name: $ #include "GAD_OPTIONS.h" CBOP C !ROUTINE: GAD_FLUXLIMIT_ADV_Y C !INTERFACE: ========================================================== SUBROUTINE GAD_FLUXLIMIT_ADV_Y( I bi,bj,k,deltaTloc, I vTrans, vFld, I maskLocS, tracer, O vT, I myThid ) C !DESCRIPTION: C Calculates the area integrated meridional flux due to advection of a tracer C using second-order interpolation with a flux limiter: C \begin{equation*} C F^y_{adv} = V \overline{ \theta }^j C - \frac{1}{2} \left( C [ 1 - \psi(C_r) ] |V| C + V \frac{v \Delta t}{\Delta y_c} \psi(C_r) C \right) \delta_j \theta C \end{equation*} C where the $\psi(C_r)$ is the limiter function and $C_r$ is C the slope ratio. C !USES: =============================================================== IMPLICIT NONE #include "SIZE.h" #include "GRID.h" C !INPUT PARAMETERS: =================================================== C bi,bj :: tile indices C k :: vertical level C vTrans :: meridional volume transport C vFld :: meridional flow C tracer :: tracer field C myThid :: thread number INTEGER bi,bj,k _RL deltaTloc _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskLocS(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER myThid C !OUTPUT PARAMETERS: ================================================== C vT :: meridional advective flux _RL vT (1-OLx:sNx+OLx,1-OLy:sNy+OLy) C !LOCAL VARIABLES: ==================================================== C i,j :: loop indices C Cr :: slope ratio C Rjm,Rj,Rjp :: differences at j-1,j,j+1 C vLoc :: velocity [m/s], meridional component INTEGER i,j _RL Cr,Rjm,Rj,Rjp _RL vLoc C Statement function provides Limiter(Cr) #include "GAD_FLUX_LIMITER.h" CEOP DO i=1-Olx,sNx+Olx vT(i,1-Oly)=0. vT(i,2-Oly)=0. vT(i,sNy+Oly)=0. ENDDO DO j=1-Oly+2,sNy+Oly-1 DO i=1-Olx,sNx+Olx vLoc = vFld(i,j) c vLoc = vTrans(i,j)*recip_dxG(i,j,bi,bj) c & *recip_drF(k)*_recip_hFacS(i,j,k,bi,bj) Rjp=(tracer(i,j+1)-tracer(i, j ))*maskLocS(i,j+1) Rj =(tracer(i, j )-tracer(i,j-1))*maskLocS(i, j ) Rjm=(tracer(i,j-1)-tracer(i,j-2))*maskLocS(i,j-1) IF (Rj.NE.0.) THEN IF (vTrans(i,j).GT.0) THEN Cr=Rjm/Rj ELSE Cr=Rjp/Rj ENDIF ELSE IF (vTrans(i,j).GT.0) THEN Cr=Rjm*1.E20 ELSE Cr=Rjp*1.E20 ENDIF ENDIF Cr=Limiter(Cr) vT(i,j) = & vTrans(i,j)*(Tracer(i,j)+Tracer(i,j-1))*0.5 _d 0 & -0.5*( & (1-Cr)*ABS(vTrans(i,j)) & +vTrans(i,j)*vLoc*deltaTloc & *recip_dyC(i,j,bi,bj)*Cr & )*Rj ENDDO ENDDO RETURN END