/[MITgcm]/MITgcm/pkg/generic_advdiff/gad_dst3fl_impl_r.F
ViewVC logotype

Contents of /MITgcm/pkg/generic_advdiff/gad_dst3fl_impl_r.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download)
Wed Oct 5 18:43:36 2016 UTC (7 years, 7 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint66g, checkpoint66f, checkpoint66e, checkpoint66d, checkpoint66c, checkpoint66b, checkpoint66a, checkpoint66o, checkpoint66n, checkpoint66m, checkpoint66l, checkpoint66k, checkpoint66j, checkpoint66i, checkpoint66h, HEAD
Changes since 1.4: +11 -2 lines
- add deep atmosphere and anelastic scaling factor in implicit vertical
  advection routines (gad_*_impl_r.F).

1 C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_dst3fl_impl_r.F,v 1.4 2011/12/01 14:14:44 jmc Exp $
2 C $Name: $
3
4 #include "GAD_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: GAD_DST3FL_IMPL_R
8 C !INTERFACE:
9 SUBROUTINE GAD_DST3FL_IMPL_R(
10 I bi,bj,k, iMin,iMax,jMin,jMax,
11 I deltaTarg, rTrans, recip_hFac, tFld,
12 O a5d, b5d, c5d, d5d, e5d,
13 I myThid )
14
15 C !DESCRIPTION:
16
17 C Compute matrix element to solve vertical advection implicitly
18 C using 3rd order Direct Space and Time (DST) advection scheme
19 C with Flux-Limiter.
20 C Method:
21 C contribution of vertical transport at interface k is added
22 C to matrix lines k and k-1
23
24 C !USES:
25 IMPLICIT NONE
26
27 C == Global variables ===
28 #include "SIZE.h"
29 #include "GRID.h"
30 #include "EEPARAMS.h"
31 #include "PARAMS.h"
32 #include "GAD.h"
33
34 C !INPUT/OUTPUT PARAMETERS:
35 C == Routine Arguments ==
36 C bi,bj :: tile indices
37 C k :: vertical level
38 C iMin,iMax :: computation domain
39 C jMin,jMax :: computation domain
40 C deltaTarg :: time step
41 C rTrans :: vertical volume transport
42 C recip_hFac :: inverse of cell open-depth factor
43 C tFld :: tracer field
44 C a5d :: 2nd lower diag of pentadiagonal matrix
45 C b5d :: 1rst lower diag of pentadiagonal matrix
46 C c5d :: main diag of pentadiagonal matrix
47 C d5d :: 1rst upper diag of pentadiagonal matrix
48 C e5d :: 2nd upper diag of pentadiagonal matrix
49 C myThid :: thread number
50 INTEGER bi,bj,k
51 INTEGER iMin,iMax,jMin,jMax
52 _RL deltaTarg(Nr)
53 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
54 _RS recip_hFac(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
55 _RL tFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
56 _RL a5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
57 _RL b5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
58 _RL c5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
59 _RL d5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
60 _RL e5d (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
61 INTEGER myThid
62
63 C == Local Variables ==
64 C i,j :: loop indices
65 C kp1 :: =min( k+1 , Nr )
66 C km2 :: =max( k-2 , 1 )
67 C wCFL :: Courant-Friedrich-Levy number
68 C lowFac :: low order term factor
69 C highFac :: high order term factor
70 C rCenter :: centered contribution
71 C rUpwind :: upwind contribution
72 C rC4km, rC4kp :: high order contributions
73 INTEGER i,j,kp1,km2
74 _RL wCFL, rCenter, rUpwind
75 _RL lowFac (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
76 _RL highFac(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
77 _RL rC4km, rC4kp
78 _RL mskM, mskP, maskM2, maskP1
79 _RL Rj, Rjh, cL1, cH3, cM2, th1, th2
80 _RL deltaTcfl
81 CEOP
82
83 C-- process interior interface only:
84 IF ( k.GT.1 .AND. k.LE.Nr ) THEN
85
86 km2=MAX(1,k-2)
87 kp1=MIN(Nr,k+1)
88 maskP1 = 1. _d 0
89 maskM2 = 1. _d 0
90 IF ( k.LE.2 ) maskM2 = 0. _d 0
91 IF ( k.GE.Nr) maskP1 = 0. _d 0
92
93 C-- Compute the low-order term & high-order term fractions :
94 deltaTcfl = deltaTarg(k)
95 C DST-3 Flux-Limiter Advection Scheme:
96 C- Limiter: Psi=max(0,min(1,cL1+theta*cH1,theta*(1-cfl)/cfl) )
97 C with theta=Rjh/Rj ;
98 C is linearize arround the current value of theta(tFld) & cfl:
99 C lowFac & highFac are set such as Psi*Rj = lowFac*Rj + highFac*Rjh
100 DO j=jMin,jMax
101 DO i=iMin,iMax
102 wCFL = deltaTcfl*ABS(rTrans(i,j))
103 & *recip_rA(i,j,bi,bj)*recip_drC(k)
104 & *recip_deepFac2F(k)*recip_rhoFacF(k)
105 cL1 = (2. _d 0 -wCFL)*(1. _d 0 -wCFL)*oneSixth
106 cH3 = (1. _d 0 -wCFL*wCFL)*oneSixth
107 c cM2 = (1. _d 0 - wCFL)/( wCFL +1. _d -20)
108 cM2 = (1. _d 0 + wCFL)/( wCFL +1. _d -20)
109
110 Rj =(tFld(i,j,k) -tFld(i,j,k-1))
111 IF ( rTrans(i,j).GT.0. _d 0 ) THEN
112 Rjh = (tFld(i,j,k-1)-tFld(i,j,km2))*maskC(i,j,km2,bi,bj)
113 ELSE
114 Rjh = (tFld(i,j,kp1)-tFld(i,j,k) )*maskC(i,j,kp1,bi,bj)
115 ENDIF
116 IF ( Rj*Rjh.LE.0. _d 0 ) THEN
117 C- 1rst case: theta < 0 (Rj & Rjh opposite sign) => Psi = 0
118 lowFac(i,j) = 0. _d 0
119 highFac(i,j)= 0. _d 0
120 ELSE
121 Rj = ABS(Rj)
122 Rjh = ABS(Rjh)
123 th1 = cL1*Rj+cH3*Rjh
124 th2 = cM2*Rjh
125 IF ( th1.LE.th2 .AND. th1.LE.Rj ) THEN
126 C- 2nd case: cL1+theta*cH3 = min of the three = Psi
127 lowFac(i,j) = cL1
128 highFac(i,j)= cH3
129 ELSEIF ( th2.LT.th1 .AND. th2.LE.Rj ) THEN
130 C- 3rd case: theta*cM2 = min of the three = Psi
131 lowFac(i,j) = 0. _d 0
132 highFac(i,j)= cM2
133 ELSE
134 C- 4th case (Rj < th1 & Rj < th2) : 1 = min of the three = Psi
135 lowFac(i,j) = 1. _d 0
136 highFac(i,j)= 0. _d 0
137 ENDIF
138 ENDIF
139 ENDDO
140 ENDDO
141
142 C-- Add centered & upwind contributions
143 DO j=jMin,jMax
144 DO i=iMin,iMax
145 rCenter= 0.5 _d 0 *rTrans(i,j)*recip_rA(i,j,bi,bj)*rkSign
146 mskM = maskC(i,j,km2,bi,bj)*maskM2
147 mskP = maskC(i,j,kp1,bi,bj)*maskP1
148 rUpwind= (0.5 _d 0 -lowFac(i,j))*ABS(rCenter)*2. _d 0
149 rC4km = highFac(i,j)*(rCenter+ABS(rCenter))*mskM
150 rC4kp = highFac(i,j)*(rCenter-ABS(rCenter))*mskP
151
152 a5d(i,j,k) = a5d(i,j,k)
153 & + rC4km
154 & *deltaTarg(k)
155 & *recip_hFac(i,j,k)*recip_drF(k)
156 & *recip_deepFac2C(k)*recip_rhoFacC(k)
157 b5d(i,j,k) = b5d(i,j,k)
158 & - ( (rCenter+rUpwind) + rC4km )
159 & *deltaTarg(k)
160 & *recip_hFac(i,j,k)*recip_drF(k)
161 & *recip_deepFac2C(k)*recip_rhoFacC(k)
162 c5d(i,j,k) = c5d(i,j,k)
163 & - ( (rCenter-rUpwind) + rC4kp )
164 & *deltaTarg(k)
165 & *recip_hFac(i,j,k)*recip_drF(k)
166 & *recip_deepFac2C(k)*recip_rhoFacC(k)
167 d5d(i,j,k) = d5d(i,j,k)
168 & + rC4kp
169 & *deltaTarg(k)
170 & *recip_hFac(i,j,k)*recip_drF(k)
171 & *recip_deepFac2C(k)*recip_rhoFacC(k)
172 b5d(i,j,k-1) = b5d(i,j,k-1)
173 & - rC4km
174 & *deltaTarg(k-1)
175 & *recip_hFac(i,j,k-1)*recip_drF(k-1)
176 & *recip_deepFac2C(k-1)*recip_rhoFacC(k-1)
177 c5d(i,j,k-1) = c5d(i,j,k-1)
178 & + ( (rCenter+rUpwind) + rC4km )
179 & *deltaTarg(k-1)
180 & *recip_hFac(i,j,k-1)*recip_drF(k-1)
181 & *recip_deepFac2C(k-1)*recip_rhoFacC(k-1)
182 d5d(i,j,k-1) = d5d(i,j,k-1)
183 & + ( (rCenter-rUpwind) + rC4kp )
184 & *deltaTarg(k-1)
185 & *recip_hFac(i,j,k-1)*recip_drF(k-1)
186 & *recip_deepFac2C(k-1)*recip_rhoFacC(k-1)
187 e5d(i,j,k-1) = e5d(i,j,k-1)
188 & - rC4kp
189 & *deltaTarg(k-1)
190 & *recip_hFac(i,j,k-1)*recip_drF(k-1)
191 & *recip_deepFac2C(k-1)*recip_rhoFacC(k-1)
192 ENDDO
193 ENDDO
194
195 C-- process interior interface only: end
196 ENDIF
197
198 RETURN
199 END

  ViewVC Help
Powered by ViewVC 1.1.22