/[MITgcm]/MITgcm/pkg/generic_advdiff/gad_dst3fl_adv_r.F
ViewVC logotype

Contents of /MITgcm/pkg/generic_advdiff/gad_dst3fl_adv_r.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.11 - (show annotations) (download)
Fri Apr 4 20:29:08 2014 UTC (10 years ago) by jmc
Branch: MAIN
CVS Tags: checkpoint65z, checkpoint65x, checkpoint65y, checkpoint65r, checkpoint65s, checkpoint65p, checkpoint65q, checkpoint65v, checkpoint65w, checkpoint65t, checkpoint65u, checkpoint65j, checkpoint65k, checkpoint65h, checkpoint65i, checkpoint65n, checkpoint65l, checkpoint65m, checkpoint65b, checkpoint65c, checkpoint65a, checkpoint65f, checkpoint65g, checkpoint65d, checkpoint65e, checkpoint65, checkpoint66g, checkpoint66f, checkpoint66e, checkpoint66d, checkpoint66c, checkpoint66b, checkpoint66a, checkpoint66o, checkpoint66n, checkpoint66m, checkpoint66l, checkpoint66k, checkpoint66j, checkpoint66i, checkpoint66h, checkpoint65o, checkpoint64y, checkpoint64x, checkpoint64z, checkpoint64w, checkpoint64v, HEAD
Changes since 1.10: +4 -4 lines
- Replace ALLOW_AUTODIFF_TAMC by ALLOW_AUTODIFF (except for tape/storage
  which are specific to TAF/TAMC).

1 C $Header: /u/gcmpack/MITgcm/pkg/generic_advdiff/gad_dst3fl_adv_r.F,v 1.10 2011/10/13 15:10:32 mlosch Exp $
2 C $Name: $
3
4 #include "GAD_OPTIONS.h"
5
6 CBOP
7 C !ROUTINE: GAD_DST3FL_ADV_R
8
9 C !INTERFACE: ==========================================================
10 SUBROUTINE GAD_DST3FL_ADV_R(
11 I bi,bj,k,dTarg,
12 I rTrans, wFld,
13 I tracer,
14 O wT,
15 I myThid )
16
17 C !DESCRIPTION:
18 C Calculates the area integrated vertical flux due to advection of a tracer
19 C using 3rd Order DST Scheme with flux limiting
20
21 C !USES: ===============================================================
22 IMPLICIT NONE
23
24 C == GLobal variables ==
25 #include "SIZE.h"
26 #include "GRID.h"
27 #include "GAD.h"
28
29 C == Routine arguments ==
30 C !INPUT PARAMETERS: ===================================================
31 C bi,bj :: tile indices
32 C k :: vertical level
33 C deltaTloc :: local time-step (s)
34 C rTrans :: vertical volume transport
35 C wFld :: vertical flow
36 C tracer :: tracer field
37 C myThid :: thread number
38 INTEGER bi,bj,k
39 _RL dTarg
40 _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
41 _RL wFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
42 _RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
43 INTEGER myThid
44
45 C !OUTPUT PARAMETERS: ==================================================
46 C wT :: vertical advective flux
47 _RL wT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
48
49 C == Local variables ==
50 C !LOCAL VARIABLES: ====================================================
51 C i,j :: loop indices
52 C km1 :: =max( k-1 , 1 )
53 C wLoc :: velocity, vertical component
54 C wCFL :: Courant-Friedrich-Levy number
55 INTEGER i,j,kp1,km1,km2
56 _RL Rjm,Rj,Rjp,wCFL,d0,d1
57 _RL psiP,psiM,thetaP,thetaM
58 _RL wLoc
59 _RL thetaMax
60 PARAMETER( thetaMax = 1.D+20 )
61
62 km2=MAX(1,k-2)
63 km1=MAX(1,k-1)
64 kp1=MIN(Nr,k+1)
65
66 DO j=1-OLy,sNy+OLy
67 DO i=1-OLx,sNx+OLx
68 #if (defined ALLOW_AUTODIFF && defined TARGET_NEC_SX)
69 C These lines make TAF create vectorizable code
70 thetaP = 0. _d 0
71 thetaM = 0. _d 0
72 #endif
73 Rjp=(tracer(i,j,k)-tracer(i,j,kp1))
74 & *maskC(i,j,kp1,bi,bj)
75 Rj =(tracer(i,j,km1)-tracer(i,j,k))
76 & *maskC(i,j,k,bi,bj)*maskC(i,j,km1,bi,bj)
77 Rjm=(tracer(i,j,km2)-tracer(i,j,km1))
78 & *maskC(i,j,km1,bi,bj)
79
80 wLoc = wFld(i,j)
81 wCFL = ABS(wLoc*dTarg*recip_drC(k))
82 d0=(2. _d 0 -wCFL)*(1. _d 0 -wCFL)*oneSixth
83 d1=(1. _d 0 -wCFL*wCFL)*oneSixth
84
85 C- the old version: can produce overflow, division by zero,
86 C and is wrong for tracer with low concentration:
87 c thetaP=Rjm/(1.D-20+Rj)
88 c thetaM=Rjp/(1.D-20+Rj)
89 C- the right expression, but not bounded:
90 c thetaP=0.D0
91 c thetaM=0.D0
92 c IF (Rj.NE.0.D0) thetaP=Rjm/Rj
93 c IF (Rj.NE.0.D0) thetaM=Rjp/Rj
94 C- prevent |thetaP,M| to reach too big value:
95 IF ( ABS(Rj)*thetaMax .LE. ABS(Rjm) ) THEN
96 thetaP=SIGN(thetaMax,Rjm*Rj)
97 ELSE
98 thetaP=Rjm/Rj
99 ENDIF
100 IF ( ABS(Rj)*thetaMax .LE. ABS(Rjp) ) THEN
101 thetaM=SIGN(thetaMax,Rjp*Rj)
102 ELSE
103 thetaM=Rjp/Rj
104 ENDIF
105
106 psiP=d0+d1*thetaP
107 psiP=MAX(0. _d 0,MIN(MIN(1. _d 0,psiP),
108 & thetaP*(1. _d 0 -wCFL)/(wCFL+1. _d -20) ))
109 psiM=d0+d1*thetaM
110 psiM=MAX(0. _d 0,MIN(MIN(1. _d 0,psiM),
111 & thetaM*(1. _d 0 -wCFL)/(wCFL+1. _d -20) ))
112
113 wT(i,j)=
114 & 0.5*(rTrans(i,j)+ABS(rTrans(i,j)))
115 & *( tracer(i,j, k ) + psiM*Rj )
116 & +0.5*(rTrans(i,j)-ABS(rTrans(i,j)))
117 & *( tracer(i,j,km1) - psiP*Rj )
118
119 ENDDO
120 ENDDO
121
122 RETURN
123 END

  ViewVC Help
Powered by ViewVC 1.1.22