C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/generic_advdiff/gad_dst3_adv_y.F,v 1.11 2006/12/05 22:21:50 jmc Exp $ C $Name: $ #include "GAD_OPTIONS.h" CBOP C !ROUTINE: GAD_DST3_ADV_Y C !INTERFACE: ========================================================== SUBROUTINE GAD_DST3_ADV_Y( I bi,bj,k,deltaTloc, I vTrans, vFld, I maskLocS, tracer, O vT, I myThid ) C !DESCRIPTION: C Calculates the area integrated Meridional flux due to advection of a C tracer using 3rd-order Direct Space and Time (DST-3) Advection Scheme C !USES: =============================================================== IMPLICIT NONE C == GLobal variables == #include "SIZE.h" #include "GRID.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GAD.h" C == Routine arguments == C !INPUT PARAMETERS: =================================================== C bi,bj :: tile indices C k :: vertical level C deltaTloc :: local time-step (s) C vTrans :: meridional volume transport C vFld :: meridional flow C tracer :: tracer field C myThid :: thread number INTEGER bi,bj,k _RL deltaTloc _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskLocS(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER myThid C !OUTPUT PARAMETERS: ================================================== C vT :: meridional advective flux _RL vT (1-OLx:sNx+OLx,1-OLy:sNy+OLy) C == Local variables == C !LOCAL VARIABLES: ==================================================== C i,j :: loop indices C vLoc :: velocity [m/s], meridional component C vCFL :: Courant-Friedrich-Levy number INTEGER i,j _RL Rjm,Rj,Rjp,vCFL,d0,d1 _RL vLoc #ifdef OLD_DST3_FORMULATION _RL psiP,psiM,thetaP,thetaM _RL smallNo c _RL Rjjm,Rjjp IF (inAdMode) THEN smallNo = 1.0D-20 ELSE smallNo = 1.0D-20 ENDIF #endif DO i=1-Olx,sNx+Olx vT(i,1-Oly)=0. vT(i,2-Oly)=0. vT(i,sNy+Oly)=0. ENDDO DO j=1-Oly+2,sNy+Oly-1 DO i=1-Olx,sNx+Olx Rjp=(tracer(i,j+1)-tracer(i, j ))*maskLocS(i,j+1) Rj =(tracer(i, j )-tracer(i,j-1))*maskLocS(i, j ) Rjm=(tracer(i,j-1)-tracer(i,j-2))*maskLocS(i,j-1) vLoc = vFld(i,j) vCFL = ABS( vLoc*deltaTloc & *recip_dyC(i,j,bi,bj)*recip_deepFacC(k) ) d0=(2.-vCFL)*(1.-vCFL)*oneSixth d1=(1.-vCFL*vCFL)*oneSixth #ifdef OLD_DST3_FORMULATION IF ( ABS(Rj).LT.smallNo .OR. & ABS(Rjm).LT.smallNo ) THEN thetaP=0. psiP=0. ELSE thetaP=(Rjm+smallNo)/(smallNo+Rj) psiP=d0+d1*thetaP ENDIF IF ( ABS(Rj).LT.smallNo .OR. & ABS(Rjp).LT.smallNo ) THEN thetaM=0. psiM=0. ELSE thetaM=(Rjp+smallNo)/(smallNo+Rj) psiM=d0+d1*thetaM ENDIF vT(i,j)= & 0.5*(vTrans(i,j)+ABS(vTrans(i,j))) & *( Tracer(i,j-1) + psiP*Rj ) & +0.5*(vTrans(i,j)-ABS(vTrans(i,j))) & *( Tracer(i, j ) - psiM*Rj ) #else /* OLD_DST3_FORMULATION */ vT(i,j)= & 0.5*(vTrans(i,j)+ABS(vTrans(i,j))) & *( Tracer(i,j-1) + (d0*Rj+d1*Rjm) ) & +0.5*(vTrans(i,j)-ABS(vTrans(i,j))) & *( Tracer(i, j ) - (d0*Rj+d1*Rjp) ) #endif /* OLD_DST3_FORMULATION */ ENDDO ENDDO RETURN END