C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/generic_advdiff/gad_dst3_adv_x.F,v 1.10 2006/10/22 01:08:04 jmc Exp $ C $Name: $ #include "GAD_OPTIONS.h" CBOP C !ROUTINE: GAD_DST3_ADV_X C !INTERFACE: ========================================================== SUBROUTINE GAD_DST3_ADV_X( I bi,bj,k,deltaTloc, I uTrans, uFld, I maskLocW, tracer, O uT, I myThid ) C !DESCRIPTION: C Calculates the area integrated zonal flux due to advection of a C tracer using 3rd-order Direct Space and Time (DST-3) Advection Scheme C !USES: =============================================================== IMPLICIT NONE C == GLobal variables == #include "SIZE.h" #include "GRID.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GAD.h" C == Routine arguments == C !INPUT PARAMETERS: =================================================== C bi,bj :: tile indices C k :: vertical level C deltaTloc :: local time-step (s) C uTrans :: zonal volume transport C uFld :: zonal flow C tracer :: tracer field C myThid :: thread number INTEGER bi,bj,k _RL deltaTloc _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskLocW(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER myThid C !OUTPUT PARAMETERS: ================================================== C uT :: zonal advective flux _RL uT (1-OLx:sNx+OLx,1-OLy:sNy+OLy) C == Local variables == C !LOCAL VARIABLES: ==================================================== C i,j :: loop indices C uLoc :: velocity [m/s], zonal component C cfl :: Courant-Friedrich-Levy number INTEGER i,j _RL uLoc _RL Rjm,Rj,Rjp,cfl,d0,d1 #ifdef OLD_DST3_FORMULATION _RL psiP,psiM,thetaP,thetaM _RL smallNo c _RL Rjjm,Rjjp IF (inAdMode) THEN smallNo = 1.0D-20 ELSE smallNo = 1.0D-20 ENDIF #endif DO j=1-Oly,sNy+Oly uT(1-Olx,j)=0. uT(2-Olx,j)=0. uT(sNx+Olx,j)=0. DO i=1-Olx+2,sNx+Olx-1 Rjp=(tracer(i+1,j)-tracer( i ,j))*maskLocW(i+1,j) Rj =(tracer( i ,j)-tracer(i-1,j))*maskLocW( i ,j) Rjm=(tracer(i-1,j)-tracer(i-2,j))*maskLocW(i-1,j) uLoc = uFld(i,j) c uLoc = uTrans(i,j)*recip_dyG(i,j,bi,bj) c & *recip_drF(k)*_recip_hFacW(i,j,k,bi,bj) cfl=ABS(uLoc*deltaTloc*recip_dxC(i,j,bi,bj)) d0=(2.-cfl)*(1.-cfl)*oneSixth d1=(1.-cfl*cfl)*oneSixth #ifdef OLD_DST3_FORMULATION IF ( ABS(Rj).LT.smallNo .OR. & ABS(Rjm).LT.smallNo ) THEN thetaP=0. psiP=0. ELSE thetaP=(Rjm+smallNo)/(smallNo+Rj) psiP=d0+d1*thetaP ENDIF IF ( ABS(Rj).LT.smallNo .OR. & ABS(Rjp).LT.smallNo ) THEN thetaM=0. psiM=0. ELSE thetaM=(Rjp+smallNo)/(smallNo+Rj) psiM=d0+d1*thetaM ENDIF uT(i,j)= & 0.5*(uTrans(i,j)+ABS(uTrans(i,j))) & *( Tracer(i-1,j) + psiP*Rj ) & +0.5*(uTrans(i,j)-ABS(uTrans(i,j))) & *( Tracer( i ,j) - psiM*Rj ) #else /* OLD_DST3_FORMULATION */ uT(i,j)= & 0.5*(uTrans(i,j)+ABS(uTrans(i,j))) & *( Tracer(i-1,j) + (d0*Rj+d1*Rjm) ) & +0.5*(uTrans(i,j)-ABS(uTrans(i,j))) & *( Tracer( i ,j) - (d0*Rj+d1*Rjp) ) #endif /* OLD_DST3_FORMULATION */ ENDDO ENDDO RETURN END