C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/generic_advdiff/gad_dst3_adv_r.F,v 1.6 2005/10/22 20:12:23 jmc Exp $ C $Name: $ #include "GAD_OPTIONS.h" CBOP C !ROUTINE: GAD_DST3_ADV_R C !INTERFACE: ========================================================== SUBROUTINE GAD_DST3_ADV_R( I bi,bj,k,dTarg, I rTrans, wVel, I tracer, O wT, I myThid ) C !DESCRIPTION: C Calculates the area integrated vertical flux due to advection of a tracer C using 3rd-order Direct Space and Time (DST-3) Advection Scheme C !USES: =============================================================== IMPLICIT NONE C == GLobal variables == #include "SIZE.h" #include "GRID.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GAD.h" C == Routine arguments == C !INPUT PARAMETERS: =================================================== C bi,bj :: tile indices C k :: vertical level C deltaTloc :: local time-step (s) C rTrans :: vertical volume transport C wVel :: vertical flow C tracer :: tracer field C myThid :: thread number INTEGER bi,bj,k _RL dTarg _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL wVel(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) _RL tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) INTEGER myThid C !OUTPUT PARAMETERS: ================================================== C wT :: vertical advective flux _RL wT (1-OLx:sNx+OLx,1-OLy:sNy+OLy) C == Local variables == C !LOCAL VARIABLES: ==================================================== C i,j :: loop indices C km1 :: =max( k-1 , 1 ) C rLimit :: centered (vs upwind) fraction C wFld :: velocity, vertical component C wCFL :: Courant-Friedrich-Levy number INTEGER i,j,kp1,km1,km2 _RL Rjm,Rj,Rjp,cfl,d0,d1 _RL psiP,psiM,thetaP,thetaM _RL wFld _RL smallNo IF (inAdMode) THEN smallNo = 1.0D-20 ELSE smallNo = 1.0D-20 ENDIF km2=MAX(1,k-2) km1=MAX(1,k-1) kp1=MIN(Nr,k+1) DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx Rjp=(tracer(i,j,k)-tracer(i,j,kp1)) & *maskC(i,j,kp1,bi,bj) Rj =(tracer(i,j,km1)-tracer(i,j,k)) & *maskC(i,j,k,bi,bj)*maskC(i,j,km1,bi,bj) Rjm=(tracer(i,j,km2)-tracer(i,j,km1)) & *maskC(i,j,km1,bi,bj) c wFld = wVel(i,j,k,bi,bj) wFld = rTrans(i,j)*recip_rA(i,j,bi,bj) cfl=abs(wFld*dTarg*recip_drC(k)) d0=(2.-cfl)*(1.-cfl)*oneSixth d1=(1.-cfl*cfl)*oneSixth #ifdef ALLOW_MATRIX IF (.NOT.useMATRIX) THEN #endif /* ALLOW_MATRIX */ IF ( ABS(Rj).LT.smallNo .OR. & ABS(Rjm).LT.smallNo ) THEN thetaP=0. psiP=0. ELSE thetaP=(Rjm+smallNo)/(smallNo+Rj) psiP=d0+d1*thetaP ENDIF IF ( ABS(Rj).LT.smallNo .OR. & ABS(Rjp).LT.smallNo ) THEN thetaM=0. psiM=0. ELSE thetaM=(Rjp+smallNo)/(smallNo+Rj) psiM=d0+d1*thetaM ENDIF wT(i,j)= & 0.5*(rTrans(i,j)+abs(rTrans(i,j))) & *( tracer(i,j, k ) + psiM*Rj ) & +0.5*(rTrans(i,j)-abs(rTrans(i,j))) & *( tracer(i,j,km1) - psiP*Rj ) #ifdef ALLOW_MATRIX ELSE wT(i,j)= & 0.5*(rTrans(i,j)+abs(rTrans(i,j))) & *( tracer(i,j, k ) + (d0*Rj+d1*Rjp) ) & +0.5*(rTrans(i,j)-abs(rTrans(i,j))) & *( tracer(i,j,km1) - (d0*Rj+d1*Rjm) ) ENDIF #endif /* ALLOW_MATRIX */ ENDDO ENDDO RETURN END