| 1 |
C $Header: /u/gcmpack/models/MITgcmUV/pkg/generic_advdiff/gad_calc_rhs.F,v 1.1 2001/05/30 19:34:48 adcroft Exp $ |
| 2 |
C $Name: $ |
| 3 |
|
| 4 |
#include "GAD_OPTIONS.h" |
| 5 |
|
| 6 |
SUBROUTINE GAD_CALC_RHS( |
| 7 |
I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, |
| 8 |
I xA,yA,uTrans,vTrans,rTrans,maskUp, |
| 9 |
I diffKh, diffK4, KappaRT, Tracer, |
| 10 |
I tracerIdentity, |
| 11 |
U fVerT, gTracer, |
| 12 |
I myThid ) |
| 13 |
C /==========================================================\ |
| 14 |
C | SUBROUTINE GAD_CALC_RHS | |
| 15 |
C |==========================================================| |
| 16 |
C \==========================================================/ |
| 17 |
IMPLICIT NONE |
| 18 |
|
| 19 |
C == GLobal variables == |
| 20 |
#include "SIZE.h" |
| 21 |
#include "EEPARAMS.h" |
| 22 |
#include "PARAMS.h" |
| 23 |
#include "GRID.h" |
| 24 |
#include "DYNVARS.h" |
| 25 |
#include "GAD.h" |
| 26 |
|
| 27 |
C == Routine arguments == |
| 28 |
INTEGER k,kUp,kDown,kM1 |
| 29 |
INTEGER bi,bj,iMin,iMax,jMin,jMax |
| 30 |
_RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 31 |
_RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 32 |
_RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 33 |
_RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 34 |
_RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 35 |
_RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 36 |
_RL diffKh, diffK4 |
| 37 |
_RL KappaRT(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 38 |
_RL Tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 39 |
INTEGER tracerIdentity |
| 40 |
_RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) |
| 41 |
_RL gTracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) |
| 42 |
INTEGER myThid |
| 43 |
|
| 44 |
C == Local variables == |
| 45 |
C I, J, K - Loop counters |
| 46 |
INTEGER i,j |
| 47 |
LOGICAL TOP_LAYER |
| 48 |
_RL afFacT, dfFacT |
| 49 |
_RL df4 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 50 |
_RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 51 |
_RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 52 |
_RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 53 |
_RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 54 |
_RL localT(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 55 |
|
| 56 |
#ifdef ALLOW_AUTODIFF_TAMC |
| 57 |
C-- only the kUp part of fverT is set in this subroutine |
| 58 |
C-- the kDown is still required |
| 59 |
fVerT(1,1,kDown) = fVerT(1,1,kDown) |
| 60 |
#endif |
| 61 |
DO j=1-OLy,sNy+OLy |
| 62 |
DO i=1-OLx,sNx+OLx |
| 63 |
fZon(i,j) = 0.0 |
| 64 |
fMer(i,j) = 0.0 |
| 65 |
fVerT(i,j,kUp) = 0.0 |
| 66 |
ENDDO |
| 67 |
ENDDO |
| 68 |
|
| 69 |
afFacT = 1. _d 0 |
| 70 |
dfFacT = 1. _d 0 |
| 71 |
TOP_LAYER = K .EQ. 1 |
| 72 |
|
| 73 |
C-- Make local copy of tracer array |
| 74 |
DO j=1-OLy,sNy+OLy |
| 75 |
DO i=1-OLx,sNx+OLx |
| 76 |
localT(i,j)=tracer(i,j,k,bi,bj) |
| 77 |
ENDDO |
| 78 |
ENDDO |
| 79 |
|
| 80 |
|
| 81 |
C-- Pre-calculate del^2 T if bi-harmonic coefficient is non-zero |
| 82 |
IF (diffK4 .NE. 0.) THEN |
| 83 |
CALL GAD_GRAD_X(bi,bj,k,xA,localT,fZon,myThid) |
| 84 |
CALL GAD_GRAD_Y(bi,bj,k,yA,localT,fMer,myThid) |
| 85 |
CALL GAD_DEL2(bi,bj,k,fZon,fMer,df4,myThid) |
| 86 |
ENDIF |
| 87 |
|
| 88 |
C-- Initialize net flux in X direction |
| 89 |
DO j=1-Oly,sNy+Oly |
| 90 |
DO i=1-Olx,sNx+Olx |
| 91 |
fZon(i,j) = 0. |
| 92 |
ENDDO |
| 93 |
ENDDO |
| 94 |
|
| 95 |
C- Advective flux in X |
| 96 |
IF (gad_advection_scheme.EQ.ENUM_CENTERED_2ND) THEN |
| 97 |
CALL GAD_C2_ADV_X(bi,bj,k,uTrans,localT,af,myThid) |
| 98 |
ELSEIF (gad_advection_scheme.EQ.ENUM_FLUX_LIMIT) THEN |
| 99 |
CALL GAD_FLUXLIMIT_ADV_X( |
| 100 |
& bi,bj,k,deltaTtracer,uTrans,uVel,localT,af,myThid) |
| 101 |
ELSEIF (gad_advection_scheme.EQ.ENUM_UPWIND_3RD ) THEN |
| 102 |
CALL GAD_U3_ADV_X(bi,bj,k,uTrans,localT,af,myThid) |
| 103 |
ELSEIF (gad_advection_scheme.EQ.ENUM_CENTERED_4TH) THEN |
| 104 |
CALL GAD_C4_ADV_X(bi,bj,k,uTrans,localT,af,myThid) |
| 105 |
ELSE |
| 106 |
STOP 'GAD_CALC_RHS: Bad gad_advection_scheme (X)' |
| 107 |
ENDIF |
| 108 |
DO j=jMin,jMax |
| 109 |
DO i=iMin,iMax |
| 110 |
fZon(i,j) = fZon(i,j) + af(i,j) |
| 111 |
ENDDO |
| 112 |
ENDDO |
| 113 |
|
| 114 |
C- Diffusive flux in X |
| 115 |
IF (diffKh.NE.0.) THEN |
| 116 |
CALL GAD_DIFF_X(bi,bj,k,xA,diffKh,localT,df,myThid) |
| 117 |
ELSE |
| 118 |
DO j=jMin,jMax |
| 119 |
DO i=iMin,iMax |
| 120 |
df(i,j) = 0. |
| 121 |
ENDDO |
| 122 |
ENDDO |
| 123 |
ENDIF |
| 124 |
|
| 125 |
#ifdef ALLOW_GMREDI |
| 126 |
C- GM/Redi flux in X |
| 127 |
IF (useGMRedi) THEN |
| 128 |
C *note* should update GMREDI_XTRANSPORT to use localT and set df *aja* |
| 129 |
CALL GMREDI_XTRANSPORT( |
| 130 |
I iMin,iMax,jMin,jMax,bi,bj,K, |
| 131 |
I xA,Tracer, |
| 132 |
U df, |
| 133 |
I myThid) |
| 134 |
ENDIF |
| 135 |
#endif |
| 136 |
DO j=jMin,jMax |
| 137 |
DO i=iMin,iMax |
| 138 |
fZon(i,j) = fZon(i,j) + df(i,j) |
| 139 |
ENDDO |
| 140 |
ENDDO |
| 141 |
|
| 142 |
C- Bi-harmonic duffusive flux in X |
| 143 |
IF (diffK4 .NE. 0.) THEN |
| 144 |
CALL GAD_BIHARM_X(bi,bj,k,xA,df4,diffK4,df,myThid) |
| 145 |
DO j=jMin,jMax |
| 146 |
DO i=iMin,iMax |
| 147 |
fZon(i,j) = fZon(i,j) + df(i,j) |
| 148 |
ENDDO |
| 149 |
ENDDO |
| 150 |
ENDIF |
| 151 |
|
| 152 |
C-- Initialize net flux in Y direction |
| 153 |
DO j=1-Oly,sNy+Oly |
| 154 |
DO i=1-Olx,sNx+Olx |
| 155 |
fMer(i,j) = 0. |
| 156 |
ENDDO |
| 157 |
ENDDO |
| 158 |
|
| 159 |
C- Advective flux in Y |
| 160 |
IF (gad_advection_scheme.EQ.ENUM_CENTERED_2ND) THEN |
| 161 |
CALL GAD_C2_ADV_Y(bi,bj,k,vTrans,localT,af,myThid) |
| 162 |
ELSEIF (gad_advection_scheme.EQ.ENUM_FLUX_LIMIT) THEN |
| 163 |
CALL GAD_FLUXLIMIT_ADV_Y( |
| 164 |
& bi,bj,k,deltaTtracer,vTrans,vVel,localT,af,myThid) |
| 165 |
ELSEIF (gad_advection_scheme.EQ.ENUM_UPWIND_3RD ) THEN |
| 166 |
CALL GAD_U3_ADV_Y(bi,bj,k,vTrans,localT,af,myThid) |
| 167 |
ELSEIF (gad_advection_scheme.EQ.ENUM_CENTERED_4TH) THEN |
| 168 |
CALL GAD_C4_ADV_Y(bi,bj,k,vTrans,localT,af,myThid) |
| 169 |
ELSE |
| 170 |
STOP 'GAD_CALC_RHS: Bad gad_advection_scheme (Y)' |
| 171 |
ENDIF |
| 172 |
DO j=1-Oly,sNy+Oly |
| 173 |
DO i=1-Olx,sNx+Olx |
| 174 |
fMer(i,j) = fMer(i,j) + af(i,j) |
| 175 |
ENDDO |
| 176 |
ENDDO |
| 177 |
|
| 178 |
C- Diffusive flux in Y |
| 179 |
IF (diffKh.NE.0.) THEN |
| 180 |
CALL GAD_DIFF_Y(bi,bj,k,yA,diffKh,localT,df,myThid) |
| 181 |
ELSE |
| 182 |
DO j=1-Oly,sNy+Oly |
| 183 |
DO i=1-Olx,sNx+Olx |
| 184 |
df(i,j) = 0. |
| 185 |
ENDDO |
| 186 |
ENDDO |
| 187 |
ENDIF |
| 188 |
|
| 189 |
#ifdef ALLOW_GMREDI |
| 190 |
C- GM/Redi flux in Y |
| 191 |
IF (useGMRedi) THEN |
| 192 |
CALL GMREDI_YTRANSPORT( |
| 193 |
C *note* should update GMREDI_YTRANSPORT to use localT and set df *aja* |
| 194 |
I iMin,iMax,jMin,jMax,bi,bj,K, |
| 195 |
I yA,Tracer, |
| 196 |
U df, |
| 197 |
I myThid) |
| 198 |
ENDIF |
| 199 |
#endif |
| 200 |
DO j=1-Oly,sNy+Oly |
| 201 |
DO i=1-Olx,sNx+Olx |
| 202 |
fMer(i,j) = fMer(i,j) + df(i,j) |
| 203 |
ENDDO |
| 204 |
ENDDO |
| 205 |
|
| 206 |
C- Bi-harmonic flux in Y |
| 207 |
IF (diffK4 .NE. 0.) THEN |
| 208 |
CALL GAD_BIHARM_Y(bi,bj,k,yA,df4,diffK4,df,myThid) |
| 209 |
DO j=1-Oly,sNy+Oly |
| 210 |
DO i=1-Olx,sNx+Olx |
| 211 |
fMer(i,j) = fMer(i,j) + df(i,j) |
| 212 |
ENDDO |
| 213 |
ENDDO |
| 214 |
ENDIF |
| 215 |
|
| 216 |
C-- Initialize net flux in R |
| 217 |
DO j=jMin,jMax |
| 218 |
DO i=iMin,iMax |
| 219 |
fVerT(i,j,kUp) = 0. |
| 220 |
ENDDO |
| 221 |
ENDDO |
| 222 |
|
| 223 |
C- Advective flux in R |
| 224 |
C Note: wVel needs to be masked |
| 225 |
IF (K.GE.2) THEN |
| 226 |
C- Compute vertical advective flux in the interior: |
| 227 |
IF (gad_advection_scheme.EQ.ENUM_CENTERED_2ND) THEN |
| 228 |
CALL GAD_C2_ADV_R(bi,bj,k,rTrans,tracer,af,myThid) |
| 229 |
ELSEIF (gad_advection_scheme.EQ.ENUM_FLUX_LIMIT) THEN |
| 230 |
CALL GAD_FLUXLIMIT_ADV_R( |
| 231 |
& bi,bj,k,deltaTtracer,rTrans,wVel,tracer,af,myThid) |
| 232 |
ELSEIF (gad_advection_scheme.EQ.ENUM_UPWIND_3RD ) THEN |
| 233 |
CALL GAD_U3_ADV_R(bi,bj,k,rTrans,tracer,af,myThid) |
| 234 |
ELSEIF (gad_advection_scheme.EQ.ENUM_CENTERED_4TH) THEN |
| 235 |
CALL GAD_C4_ADV_R(bi,bj,k,rTrans,tracer,af,myThid) |
| 236 |
c CALL GAD_C2_ADV_R(bi,bj,k,rTrans,tracer,af,myThid) |
| 237 |
ELSE |
| 238 |
STOP 'GAD_CALC_RHS: Bad gad_advection_scheme (R)' |
| 239 |
ENDIF |
| 240 |
C- Surface "correction" term at k>1 : |
| 241 |
DO j=1-Oly,sNy+Oly |
| 242 |
DO i=1-Olx,sNx+Olx |
| 243 |
af(i,j) = af(i,j) |
| 244 |
& + (maskC(i,j,k,bi,bj)-maskC(i,j,k-1,bi,bj))* |
| 245 |
& rTrans(i,j)*Tracer(i,j,k,bi,bj) |
| 246 |
ENDDO |
| 247 |
ENDDO |
| 248 |
ELSE |
| 249 |
C- Surface "correction" term at k=1 : |
| 250 |
DO j=1-Oly,sNy+Oly |
| 251 |
DO i=1-Olx,sNx+Olx |
| 252 |
af(i,j) = rTrans(i,j)*Tracer(i,j,k,bi,bj) |
| 253 |
ENDDO |
| 254 |
ENDDO |
| 255 |
ENDIF |
| 256 |
C- add the advective flux to fVerT |
| 257 |
DO j=jMin,jMax |
| 258 |
DO i=iMin,iMax |
| 259 |
fVerT(i,j,kUp) = fVerT(i,j,kUp) + afFacT*af(i,j) |
| 260 |
ENDDO |
| 261 |
ENDDO |
| 262 |
|
| 263 |
C- Diffusive flux in R |
| 264 |
C Note: For K=1 then KM1=1 and this gives a dT/dr = 0 upper |
| 265 |
C boundary condition. |
| 266 |
IF (implicitDiffusion) THEN |
| 267 |
DO j=jMin,jMax |
| 268 |
DO i=iMin,iMax |
| 269 |
df(i,j) = 0. |
| 270 |
ENDDO |
| 271 |
ENDDO |
| 272 |
ELSE |
| 273 |
CALL GAD_DIFF_R(bi,bj,k,KappaRT,tracer,df,myThid) |
| 274 |
ENDIF |
| 275 |
c DO j=jMin,jMax |
| 276 |
c DO i=iMin,iMax |
| 277 |
c fVerT(i,j,kUp) = fVerT(i,j,kUp) + dfFacT*df(i,j)*maskUp(i,j) |
| 278 |
c ENDDO |
| 279 |
c ENDDO |
| 280 |
|
| 281 |
#ifdef ALLOW_GMREDI |
| 282 |
C- GM/Redi flux in R |
| 283 |
IF (useGMRedi) THEN |
| 284 |
C *note* should update GMREDI_RTRANSPORT to set df *aja* |
| 285 |
CALL GMREDI_RTRANSPORT( |
| 286 |
I iMin,iMax,jMin,jMax,bi,bj,K, |
| 287 |
I maskUp,Tracer, |
| 288 |
U df, |
| 289 |
I myThid) |
| 290 |
c DO j=jMin,jMax |
| 291 |
c DO i=iMin,iMax |
| 292 |
c fVerT(i,j,kUp) = fVerT(i,j,kUp) + dfFacT*df(i,j)*maskUp(i,j) |
| 293 |
c ENDDO |
| 294 |
c ENDDO |
| 295 |
ENDIF |
| 296 |
#endif |
| 297 |
|
| 298 |
DO j=jMin,jMax |
| 299 |
DO i=iMin,iMax |
| 300 |
fVerT(i,j,kUp) = fVerT(i,j,kUp) + dfFacT*df(i,j)*maskUp(i,j) |
| 301 |
ENDDO |
| 302 |
ENDDO |
| 303 |
|
| 304 |
#ifdef ALLOW_KPP |
| 305 |
C- Add non local KPP transport term (ghat) to diffusive T flux. |
| 306 |
IF (useKPP) THEN |
| 307 |
DO j=jMin,jMax |
| 308 |
DO i=iMin,iMax |
| 309 |
df(i,j) = 0. |
| 310 |
ENDDO |
| 311 |
ENDDO |
| 312 |
IF (tracerIdentity.EQ.GAD_TEMPERATURE) THEN |
| 313 |
C *note* should update KPP_TRANSPORT_T to set df *aja* |
| 314 |
CALL KPP_TRANSPORT_T( |
| 315 |
I iMin,iMax,jMin,jMax,bi,bj,k,km1, |
| 316 |
I KappaRT, |
| 317 |
U df ) |
| 318 |
ELSEIF (tracerIdentity.EQ.GAD_SALINITY) THEN |
| 319 |
CALL KPP_TRANSPORT_S( |
| 320 |
I iMin,iMax,jMin,jMax,bi,bj,k,km1, |
| 321 |
I KappaRT, |
| 322 |
U df ) |
| 323 |
ELSE |
| 324 |
STOP 'GAD_CALC_RHS: Ooops' |
| 325 |
ENDIF |
| 326 |
DO j=jMin,jMax |
| 327 |
DO i=iMin,iMax |
| 328 |
fVerT(i,j,kUp) = fVerT(i,j,kUp) + dfFacT*df(i,j)*maskUp(i,j) |
| 329 |
ENDDO |
| 330 |
ENDDO |
| 331 |
ENDIF |
| 332 |
#endif |
| 333 |
|
| 334 |
C-- Divergence of fluxes |
| 335 |
DO j=jMin,jMax |
| 336 |
DO i=iMin,iMax |
| 337 |
gTracer(i,j,k,bi,bj)= |
| 338 |
& -_recip_hFacC(i,j,k,bi,bj)*recip_drF(k) |
| 339 |
& *recip_rA(i,j,bi,bj) |
| 340 |
& *( |
| 341 |
& +( fZon(i+1,j)-fZon(i,j) ) |
| 342 |
& +( fMer(i,j+1)-fMer(i,j) ) |
| 343 |
& +( fVerT(i,j,kUp)-fVerT(i,j,kDown) )*rkFac |
| 344 |
& ) |
| 345 |
ENDDO |
| 346 |
ENDDO |
| 347 |
|
| 348 |
RETURN |
| 349 |
END |