C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/generic_advdiff/gad_calc_rhs.F,v 1.8 2001/09/10 01:22:48 adcroft Exp $ C $Name: $ #include "GAD_OPTIONS.h" SUBROUTINE GAD_CALC_RHS( I bi,bj,iMin,iMax,jMin,jMax,k,kM1,kUp,kDown, I xA,yA,uTrans,vTrans,rTrans,maskUp, I diffKh, diffK4, KappaRT, Tracer, I tracerIdentity, advectionScheme, U fVerT, gTracer, I myThid ) C /==========================================================\ C | SUBROUTINE GAD_CALC_RHS | C |==========================================================| C \==========================================================/ IMPLICIT NONE C == GLobal variables == #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "DYNVARS.h" #include "GAD.h" C == Routine arguments == INTEGER k,kUp,kDown,kM1 INTEGER bi,bj,iMin,iMax,jMin,jMax _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL uTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL vTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL rTrans(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RS maskUp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL diffKh, diffK4 _RL KappaRT(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL Tracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) INTEGER tracerIdentity INTEGER advectionScheme _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2) _RL gTracer(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr,nSx,nSy) INTEGER myThid C == Local variables == C I, J, K - Loop counters INTEGER i,j LOGICAL TOP_LAYER _RL afFacT, dfFacT _RL df4 (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fZon (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL fMer (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL af (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL df (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL localT(1-OLx:sNx+OLx,1-OLy:sNy+OLy) #ifdef ALLOW_AUTODIFF_TAMC C-- only the kUp part of fverT is set in this subroutine C-- the kDown is still required fVerT(1,1,kDown) = fVerT(1,1,kDown) #endif DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx fZon(i,j) = 0.0 fMer(i,j) = 0.0 fVerT(i,j,kUp) = 0.0 ENDDO ENDDO afFacT = 1. _d 0 dfFacT = 1. _d 0 TOP_LAYER = K .EQ. 1 C-- Make local copy of tracer array DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx localT(i,j)=tracer(i,j,k,bi,bj) ENDDO ENDDO C-- Unless we have already calculated the advection terms we initialize C the tendency to zero. IF (.NOT. multiDimAdvection .OR. & advectionScheme.EQ.ENUM_CENTERED_2ND .OR. & advectionScheme.EQ.ENUM_UPWIND_3RD .OR. & advectionScheme.EQ.ENUM_CENTERED_4TH ) THEN DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx gTracer(i,j,k,bi,bj)=0. ENDDO ENDDO ENDIF C-- Pre-calculate del^2 T if bi-harmonic coefficient is non-zero IF (diffK4 .NE. 0.) THEN CALL GAD_GRAD_X(bi,bj,k,xA,localT,fZon,myThid) CALL GAD_GRAD_Y(bi,bj,k,yA,localT,fMer,myThid) CALL GAD_DEL2(bi,bj,k,fZon,fMer,df4,myThid) ENDIF C-- Initialize net flux in X direction DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fZon(i,j) = 0. ENDDO ENDDO C- Advective flux in X IF (.NOT. multiDimAdvection .OR. & advectionScheme.EQ.ENUM_CENTERED_2ND .OR. & advectionScheme.EQ.ENUM_UPWIND_3RD .OR. & advectionScheme.EQ.ENUM_CENTERED_4TH ) THEN IF (advectionScheme.EQ.ENUM_CENTERED_2ND) THEN CALL GAD_C2_ADV_X(bi,bj,k,uTrans,localT,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_FLUX_LIMIT) THEN CALL GAD_FLUXLIMIT_ADV_X( & bi,bj,k,deltaTtracer,uTrans,uVel,localT,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_UPWIND_3RD ) THEN CALL GAD_U3_ADV_X(bi,bj,k,uTrans,localT,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_CENTERED_4TH) THEN CALL GAD_C4_ADV_X(bi,bj,k,uTrans,localT,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_DST3 ) THEN CALL GAD_DST3_ADV_X( & bi,bj,k,deltaTtracer,uTrans,uVel,localT,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_DST3_FLUX_LIMIT ) THEN CALL GAD_DST3FL_ADV_X( & bi,bj,k,deltaTtracer,uTrans,uVel,localT,af,myThid) ELSE STOP 'GAD_CALC_RHS: Bad advectionScheme (X)' ENDIF DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fZon(i,j) = fZon(i,j) + af(i,j) ENDDO ENDDO ENDIF C- Diffusive flux in X IF (diffKh.NE.0.) THEN CALL GAD_DIFF_X(bi,bj,k,xA,diffKh,localT,df,myThid) ELSE DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx df(i,j) = 0. ENDDO ENDDO ENDIF #ifdef ALLOW_GMREDI C- GM/Redi flux in X IF (useGMRedi) THEN C *note* should update GMREDI_XTRANSPORT to use localT and set df *aja* CALL GMREDI_XTRANSPORT( I iMin,iMax,jMin,jMax,bi,bj,K, I xA,Tracer, U df, I myThid) ENDIF #endif DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fZon(i,j) = fZon(i,j) + df(i,j) ENDDO ENDDO C- Bi-harmonic duffusive flux in X IF (diffK4 .NE. 0.) THEN CALL GAD_BIHARM_X(bi,bj,k,xA,df4,diffK4,df,myThid) DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fZon(i,j) = fZon(i,j) + df(i,j) ENDDO ENDDO ENDIF C-- Initialize net flux in Y direction DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fMer(i,j) = 0. ENDDO ENDDO C- Advective flux in Y IF (.NOT. multiDimAdvection .OR. & advectionScheme.EQ.ENUM_CENTERED_2ND .OR. & advectionScheme.EQ.ENUM_UPWIND_3RD .OR. & advectionScheme.EQ.ENUM_CENTERED_4TH ) THEN IF (advectionScheme.EQ.ENUM_CENTERED_2ND) THEN CALL GAD_C2_ADV_Y(bi,bj,k,vTrans,localT,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_FLUX_LIMIT) THEN CALL GAD_FLUXLIMIT_ADV_Y( & bi,bj,k,deltaTtracer,vTrans,vVel,localT,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_UPWIND_3RD ) THEN CALL GAD_U3_ADV_Y(bi,bj,k,vTrans,localT,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_CENTERED_4TH) THEN CALL GAD_C4_ADV_Y(bi,bj,k,vTrans,localT,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_DST3 ) THEN CALL GAD_DST3_ADV_Y( & bi,bj,k,deltaTtracer,vTrans,vVel,localT,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_DST3_FLUX_LIMIT ) THEN CALL GAD_DST3FL_ADV_Y( & bi,bj,k,deltaTtracer,vTrans,vVel,localT,af,myThid) ELSE STOP 'GAD_CALC_RHS: Bad advectionScheme (Y)' ENDIF DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fMer(i,j) = fMer(i,j) + af(i,j) ENDDO ENDDO ENDIF C- Diffusive flux in Y IF (diffKh.NE.0.) THEN CALL GAD_DIFF_Y(bi,bj,k,yA,diffKh,localT,df,myThid) ELSE DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx df(i,j) = 0. ENDDO ENDDO ENDIF #ifdef ALLOW_GMREDI C- GM/Redi flux in Y IF (useGMRedi) THEN C *note* should update GMREDI_YTRANSPORT to use localT and set df *aja* CALL GMREDI_YTRANSPORT( I iMin,iMax,jMin,jMax,bi,bj,K, I yA,Tracer, U df, I myThid) ENDIF #endif DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fMer(i,j) = fMer(i,j) + df(i,j) ENDDO ENDDO C- Bi-harmonic flux in Y IF (diffK4 .NE. 0.) THEN CALL GAD_BIHARM_Y(bi,bj,k,yA,df4,diffK4,df,myThid) DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fMer(i,j) = fMer(i,j) + df(i,j) ENDDO ENDDO ENDIF C-- Initialize net flux in R DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fVerT(i,j,kUp) = 0. ENDDO ENDDO C- Advective flux in R IF (.NOT. multiDimAdvection .OR. & advectionScheme.EQ.ENUM_CENTERED_2ND .OR. & advectionScheme.EQ.ENUM_UPWIND_3RD .OR. & advectionScheme.EQ.ENUM_CENTERED_4TH ) THEN C Note: wVel needs to be masked IF (K.GE.2) THEN C- Compute vertical advective flux in the interior: IF (advectionScheme.EQ.ENUM_CENTERED_2ND) THEN CALL GAD_C2_ADV_R(bi,bj,k,rTrans,tracer,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_FLUX_LIMIT) THEN CALL GAD_FLUXLIMIT_ADV_R( & bi,bj,k,deltaTtracer,rTrans,wVel,tracer,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_UPWIND_3RD ) THEN CALL GAD_U3_ADV_R(bi,bj,k,rTrans,tracer,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_CENTERED_4TH) THEN CALL GAD_C4_ADV_R(bi,bj,k,rTrans,tracer,af,myThid) ELSEIF (advectionScheme.EQ.ENUM_DST3 ) THEN c CALL GAD_DST3_ADV_R( c & bi,bj,k,deltaTtracer,rTrans,wVel,tracer,af,myThid) STOP 'GAD_CALC_RHS: GAD_DST3_ADV_R not coded yet' ELSEIF (advectionScheme.EQ.ENUM_DST3_FLUX_LIMIT ) THEN c CALL GAD_DST3FL_ADV_R( c & bi,bj,k,deltaTtracer,rTrans,wVel,tracer,af,myThid) STOP 'GAD_CALC_RHS: GAD_DST3FL_ADV_R not coded yet' ELSE STOP 'GAD_CALC_RHS: Bad advectionScheme (R)' ENDIF C- Surface "correction" term at k>1 : DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx af(i,j) = af(i,j) & + (maskC(i,j,k,bi,bj)-maskC(i,j,k-1,bi,bj))* & rTrans(i,j)*Tracer(i,j,k,bi,bj) ENDDO ENDDO ELSE C- Surface "correction" term at k=1 : DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx af(i,j) = rTrans(i,j)*Tracer(i,j,k,bi,bj) ENDDO ENDDO ENDIF C- add the advective flux to fVerT DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fVerT(i,j,kUp) = fVerT(i,j,kUp) + afFacT*af(i,j) ENDDO ENDDO ENDIF C- Diffusive flux in R C Note: For K=1 then KM1=1 and this gives a dT/dr = 0 upper C boundary condition. IF (implicitDiffusion) THEN DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx df(i,j) = 0. ENDDO ENDDO ELSE CALL GAD_DIFF_R(bi,bj,k,KappaRT,tracer,df,myThid) ENDIF c DO j=1-Oly,sNy+Oly c DO i=1-Olx,sNx+Olx c fVerT(i,j,kUp) = fVerT(i,j,kUp) + dfFacT*df(i,j)*maskUp(i,j) c ENDDO c ENDDO #ifdef ALLOW_GMREDI C- GM/Redi flux in R IF (useGMRedi) THEN C *note* should update GMREDI_RTRANSPORT to set df *aja* CALL GMREDI_RTRANSPORT( I iMin,iMax,jMin,jMax,bi,bj,K, I Tracer, U df, I myThid) c DO j=1-Oly,sNy+Oly c DO i=1-Olx,sNx+Olx c fVerT(i,j,kUp) = fVerT(i,j,kUp) + dfFacT*df(i,j)*maskUp(i,j) c ENDDO c ENDDO ENDIF #endif DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fVerT(i,j,kUp) = fVerT(i,j,kUp) + dfFacT*df(i,j)*maskUp(i,j) ENDDO ENDDO #ifdef ALLOW_KPP C- Add non local KPP transport term (ghat) to diffusive T flux. IF (useKPP) THEN DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx df(i,j) = 0. ENDDO ENDDO IF (tracerIdentity.EQ.GAD_TEMPERATURE) THEN C *note* should update KPP_TRANSPORT_T to set df *aja* CALL KPP_TRANSPORT_T( I iMin,iMax,jMin,jMax,bi,bj,k,km1, I KappaRT, U df ) ELSEIF (tracerIdentity.EQ.GAD_SALINITY) THEN CALL KPP_TRANSPORT_S( I iMin,iMax,jMin,jMax,bi,bj,k,km1, I KappaRT, U df ) ELSE STOP 'GAD_CALC_RHS: Ooops' ENDIF DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx fVerT(i,j,kUp) = fVerT(i,j,kUp) + dfFacT*df(i,j)*maskUp(i,j) ENDDO ENDDO ENDIF #endif C-- Divergence of fluxes DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx gTracer(i,j,k,bi,bj)=gTracer(i,j,k,bi,bj) & -_recip_hFacC(i,j,k,bi,bj)*recip_drF(k) & *recip_rA(i,j,bi,bj) & *( & +( fZon(i+1,j)-fZon(i,j) ) & +( fMer(i,j+1)-fMer(i,j) ) & +( fVerT(i,j,kUp)-fVerT(i,j,kDown) )*rkFac & ) ENDDO ENDDO RETURN END