/[MITgcm]/MITgcm/pkg/fizhi/fizhi_moist.F
ViewVC logotype

Annotation of /MITgcm/pkg/fizhi/fizhi_moist.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.34 - (hide annotations) (download)
Thu Jun 16 16:46:12 2005 UTC (19 years ago) by ce107
Branch: MAIN
Changes since 1.33: +9 -9 lines
Fix fizhi constants to _d 0 form as the IBM XL compiler complains on mixed
precision calls to intrinsics like max, min. Only problematic cases have
been altered - consider compiling with -qdpc=e to fix the precision of the
rest.

1 ce107 1.34 C $Header: /u/gcmpack/MITgcm/pkg/fizhi/fizhi_moist.F,v 1.33 2005/05/23 02:09:58 jmc Exp $
2 molod 1.1 C $Name: $
3 molod 1.2
4 molod 1.13 #include "FIZHI_OPTIONS.h"
5 molod 1.5 subroutine moistio (ndmoist,istrip,npcs,
6 molod 1.4 . lowlevel,midlevel,nltop,nsubmin,nsubmax,Lup,
7 molod 1.21 . pz,plz,plze,dpres,pkht,pkl,uz,vz,tz,qz,bi,bj,ntracerin,ptracer,
8     . qqz,dumoist,dvmoist,dtmoist,dqmoist,cumfric,
9 molod 1.4 . im,jm,lm,ptop,
10 molod 1.1 . iras,rainlsp,rainconv,snowfall,
11     . nswcld,cldtot_sw,cldras_sw,cldlsp_sw,nswlz,swlz,
12     . nlwcld,cldtot_lw,cldras_lw,cldlsp_lw,nlwlz,lwlz,
13 molod 1.2 . lpnt,myid)
14 molod 1.1
15 molod 1.8 implicit none
16    
17 molod 1.1 c Input Variables
18     c ---------------
19 molod 1.8 integer im,jm,lm
20 molod 1.5 integer ndmoist,istrip,npcs
21 molod 1.21 integer bi,bj,ntracerin,ptracer
22 molod 1.4 integer lowlevel,midlevel,nltop,nsubmin,nsubmax,Lup
23 molod 1.13 _RL pz(im,jm),plz(im,jm,lm),plze(im,jm,lm+1),dpres(im,jm,lm)
24     _RL pkht(im,jm,lm+1),pkl(im,jm,lm)
25 molod 1.21 _RL tz(im,jm,lm),qz(im,jm,lm,ntracerin)
26     _RL uz(im,jm,lm),vz(im,jm,lm)
27 molod 1.13 _RL qqz(im,jm,lm)
28     _RL dumoist(im,jm,lm),dvmoist(im,jm,lm)
29 molod 1.21 _RL dtmoist(im,jm,lm),dqmoist(im,jm,lm,ntracerin)
30     logical cumfric
31 molod 1.13 _RL ptop
32 molod 1.5 integer iras
33 molod 1.13 _RL rainlsp(im,jm),rainconv(im,jm),snowfall(im,jm)
34 molod 1.5 integer nswcld,nswlz
35 molod 1.13 _RL cldlsp_sw(im,jm,lm),cldras_sw(im,jm,lm)
36     _RL cldtot_sw(im,jm,lm),swlz(im,jm,lm)
37 molod 1.5 integer nlwcld,nlwlz
38 molod 1.13 _RL cldlsp_lw(im,jm,lm),cldras_lw(im,jm,lm)
39     _RL cldtot_lw(im,jm,lm),lwlz(im,jm,lm)
40 molod 1.5 logical lpnt
41     integer myid
42 molod 1.1
43     c Local Variables
44     c ---------------
45 molod 1.4 integer ncrnd,nsecf
46 molod 1.1
47 molod 1.13 _RL fracqq, dum
48 molod 1.4 integer snowcrit
49 molod 1.1 parameter (fracqq = 0.1)
50 molod 1.14 _RL one
51     parameter (one=1.)
52 molod 1.1
53 molod 1.13 _RL cldsr(im,jm,lm)
54     _RL srcld(istrip,lm)
55 molod 1.1
56 molod 1.13 _RL plev
57     _RL cldnow,cldlsp_mem,cldlsp,cldras_mem,cldras
58     _RL watnow,watmin,cldmin
59     _RL cldprs(im,jm),cldtmp(im,jm)
60     _RL cldhi (im,jm),cldlow(im,jm)
61     _RL cldmid(im,jm),totcld(im,jm)
62    
63     _RL CLDLS(im,jm,lm) , CPEN(im,jm,lm)
64     _RL tmpimjm(im,jm)
65     _RL lsp_new(im,jm)
66     _RL conv_new(im,jm)
67     _RL snow_new(im,jm)
68 molod 1.1
69 molod 1.13 _RL qqcolmin(im,jm)
70     _RL qqcolmax(im,jm)
71 molod 1.1 integer levpbl(im,jm)
72    
73     c Gathered Arrays for Variable Cloud Base
74     c ---------------------------------------
75 molod 1.13 _RL raincgath(im*jm)
76     _RL pigather(im*jm)
77     _RL thgather(im*jm,lm)
78     _RL shgather(im*jm,lm)
79     _RL pkzgather(im*jm,lm)
80     _RL pkegather(im*jm,lm+1)
81     _RL plzgather(im*jm,lm)
82     _RL plegather(im*jm,lm+1)
83     _RL dpgather(im*jm,lm)
84     _RL tmpgather(im*jm,lm)
85     _RL deltgather(im*jm,lm)
86     _RL delqgather(im*jm,lm)
87 molod 1.21 _RL ugather(im*jm,lm,ntracerin+2-ptracer)
88     _RL delugather(im*jm,lm,ntracerin+2-ptracer)
89 molod 1.13 _RL deltrnev(im*jm,lm)
90     _RL delqrnev(im*jm,lm)
91 molod 1.1
92     integer nindeces(lm)
93     integer pblindex(im*jm)
94     integer levgather(im*jm)
95    
96     c Stripped Arrays
97     c ---------------
98 molod 1.13 _RL saveth (istrip,lm)
99     _RL saveq (istrip,lm)
100 molod 1.21 _RL saveu (istrip,lm,ntracerin+2-ptracer)
101     _RL usubcl (istrip, ntracerin+2-ptracer)
102 molod 1.13
103     _RL ple(istrip,lm+1)
104     _RL dp(istrip,lm)
105     _RL TL(ISTRIP,lm) , SHL(ISTRIP,lm)
106     _RL PL(ISTRIP,lm) , PLK(ISTRIP,lm)
107     _RL PLKE(ISTRIP,lm+1)
108     _RL TH(ISTRIP,lm) ,CVTH(ISTRIP,lm)
109     _RL CVQ(ISTRIP,lm)
110 molod 1.21 _RL UL(ISTRIP,lm,ntracerin+2-ptracer)
111     _RL cvu(istrip,lm,ntracerin+2-ptracer)
112 molod 1.13 _RL CLMAXO(ISTRIP,lm),CLBOTH(ISTRIP,lm)
113     _RL CLSBTH(ISTRIP,lm)
114     _RL TMP1(ISTRIP,lm), TMP2(ISTRIP,lm)
115     _RL TMP3(ISTRIP,lm), TMP4(ISTRIP,lm+1)
116     _RL TMP5(ISTRIP,lm+1)
117 molod 1.1 integer ITMP1(ISTRIP,lm), ITMP2(ISTRIP,lm)
118    
119 molod 1.13 _RL PRECIP(ISTRIP), PCNET(ISTRIP)
120     _RL SP(ISTRIP), PREP(ISTRIP)
121     _RL PCPEN (ISTRIP,lm)
122 molod 1.1 integer pbl(istrip),depths(lm)
123    
124 molod 1.13 _RL cldlz(istrip,lm), cldwater(im,jm,lm)
125     _RL rhfrac(istrip), rhmin, pup, ppbl, rhcrit(istrip,lm)
126     _RL offset, alpha, rasmax
127 molod 1.1
128     logical first
129     logical lras
130 molod 1.13 _RL clfrac (istrip,lm)
131     _RL cldmas (istrip,lm)
132     _RL detrain(istrip,lm)
133     _RL psubcld (istrip), psubcldg (im,jm)
134     _RL psubcld_cnt(istrip), psubcldgc(im,jm)
135     _RL rnd(lm/2)
136 molod 1.1 DATA FIRST /.TRUE./
137    
138 molod 1.4 integer imstp,nsubcl,nlras
139 molod 1.16 integer i,j,iloop,indx,indgath,l,nn,num,numdeps,nt
140 molod 1.13 _RL tmstp,tminv,sday,grav,alhl,cp,elocp,gamfac
141     _RL rkappa,p0kappa,p0kinv,ptopkap,pcheck
142     _RL tice,getcon,pi
143 molod 1.21 integer ntracer,ntracedim, ntracex
144 molod 1.32
145     #ifdef ALLOW_DIAGNOSTICS
146     logical diagnostics_is_on
147     external diagnostics_is_on
148     _RL tmpdiag(im,jm),tmpdiag2(im,jm)
149     #endif
150 molod 1.1
151     C **********************************************************************
152     C **** INITIALIZATION ****
153     C **********************************************************************
154    
155 molod 1.21 C Add U and V components to tracer array for cumulus friction
156    
157     if(cumfric) then
158     ntracer = ntracerin + 2
159     else
160     ntracer = ntracerin
161     endif
162 molod 1.18 ntracedim= max(ntracer-ptracer,1)
163 molod 1.21 ntracex= ntracer-ptracer
164 molod 1.1 IMSTP = nsecf(NDMOIST)
165     TMSTP = FLOAT(IMSTP)
166     TMINV = 1. / TMSTP
167    
168     C Minimum Large-Scale Cloud Fraction at rhcrit
169     alpha = 0.80
170 molod 1.2 C Difference in fraction between SR and LS Threshold
171 molod 1.1 offset = 0.10
172 molod 1.2 C Large-Scale Relative Humidity Threshold in PBL
173 molod 1.1 rhmin = 0.90
174     C Maximum Cloud Fraction associated with RAS
175     rasmax = 1.00
176    
177     nn = 3*3600.0/tmstp + 1
178     C Threshold for Cloud Fraction Memory
179     cldmin = rasmax*(1.0-tmstp/3600.)**nn
180     C Threshold for Cloud Liquid Water Memory
181     watmin = 1.0e-8
182    
183     SDAY = GETCON('SDAY')
184     GRAV = GETCON('GRAVITY')
185     ALHL = GETCON('LATENT HEAT COND')
186     CP = GETCON('CP')
187     ELOCP = GETCON('LATENT HEAT COND') / GETCON('CP')
188     GAMFAC = GETCON('LATENT HEAT COND') * GETCON('EPS') * ELOCP
189     . / GETCON('RGAS')
190     RKAPPA = GETCON('KAPPA')
191     P0KAPPA = 1000.0**RKAPPA
192     P0KINV = 1. / P0KAPPA
193     PTOPKAP = PTOP**RKAPPA
194     tice = getcon('FREEZING-POINT')
195     PI = 4.*atan(1.)
196    
197 molod 1.4 c Determine Total number of Random Clouds to Check
198 molod 1.1 c ---------------------------------------------
199 molod 1.24 ncrnd = (lm-nltop+1)/2
200 molod 1.1
201 molod 1.19 if(first .and. myid.eq.1 .and. bi.eq.1 ) then
202 molod 1.1 print *
203 molod 1.4 print *,'Top Level Allowed for Convection : ',nltop
204     print *,' Highest Sub-Cloud Level: ',nsubmax
205     print *,' Lowest Sub-Cloud Level: ',nsubmin
206 molod 1.1 print *,' Total Number of Random Clouds: ',ncrnd
207     print *
208     first = .false.
209     endif
210    
211     c And now find PBL depth - the level where qq = fracqq * qq at surface
212     c --------------------------------------------------------------------
213     do j = 1,jm
214     do i = 1,im
215     qqcolmin(i,j) = qqz(i,j,lm)*fracqq
216     qqcolmax(i,j) = qqz(i,j,lm)
217     levpbl(i,j) = lm+1
218     enddo
219     enddo
220    
221     DO L = lm-1,1,-1
222     DO j = 1,jm
223     DO i = 1,im
224     IF((qqz(i,j,l).gt.qqcolmax(i,j))
225     1 .and.(levpbl(i,j).eq.lm+1))then
226     qqcolmax(i,j) = qqz(i,j,l)
227     qqcolmin(i,j) = fracqq*qqcolmax(i,j)
228     endif
229     if((qqz(i,j,l).lt.qqcolmin(i,j))
230     1 .and.(levpbl(i,j).eq.lm+1))levpbl(i,j)=L+1
231     enddo
232     enddo
233     enddo
234    
235     do j = 1,jm
236     do i = 1,im
237     if(levpbl(i,j).gt.nsubmin) levpbl(i,j) = nsubmin
238     if(levpbl(i,j).lt.nsubmax) levpbl(i,j) = nsubmax
239     enddo
240     enddo
241    
242    
243     c Set up the array of indeces of subcloud levels for the gathering
244     c ----------------------------------------------------------------
245 molod 1.16 indx = 0
246 molod 1.1 do L = nsubmin,nltop,-1
247     do j = 1,jm
248     do i = 1,im
249     if(levpbl(i,j).eq.L) then
250 molod 1.16 indx = indx + 1
251     pblindex(indx) = (j-1)*im + i
252 molod 1.1 endif
253     enddo
254     enddo
255     enddo
256    
257 molod 1.16 do indx = 1,im*jm
258     levgather(indx) = levpbl(pblindex(indx),1)
259     pigather(indx) = pz(pblindex(indx),1)
260     pkegather(indx,lm+1) = pkht(pblindex(indx),1,lm+1)
261     plegather(indx,lm+1) = plze(pblindex(indx),1,lm+1)
262 molod 1.1 enddo
263    
264     do L = 1,lm
265 molod 1.16 do indx = 1,im*jm
266     thgather(indx,L) = tz(pblindex(indx),1,L)
267     shgather(indx,L) = qz(pblindex(indx),1,L,1)
268     pkegather(indx,L) = pkht(pblindex(indx),1,L)
269     pkzgather(indx,L) = pkl(pblindex(indx),1,L)
270     plegather(indx,L) = plze(pblindex(indx),1,L)
271     plzgather(indx,L) = plz(pblindex(indx),1,L)
272     dpgather(indx,L) = dpres(pblindex(indx),1,L)
273 molod 1.1 enddo
274     enddo
275 molod 1.21 C General Tracers
276     C----------------
277     do nt = 1,ntracerin-ptracer
278     do L = 1,lm
279     do indx = 1,im*jm
280     ugather(indx,L,nt) = qz(pblindex(indx),1,L,nt+ptracer)
281     enddo
282     enddo
283     enddo
284    
285     if(cumfric) then
286     C Cumulus Friction - load u and v wind components into tracer array
287     C------------------------------------------------------------------
288     do L = 1,lm
289     do indx = 1,im*jm
290     ugather(indx,L,ntracerin-ptracer+1) = uz(pblindex(indx),1,L)
291     ugather(indx,L,ntracerin-ptracer+2) = vz(pblindex(indx),1,L)
292     enddo
293     enddo
294    
295     endif
296 molod 1.1
297     c bump the counter for number of calls to convection
298     c --------------------------------------------------
299     iras = iras + 1
300     if( iras.ge.1e9 ) iras = 1
301    
302     c select the 'random' cloud detrainment levels for RAS
303     c ----------------------------------------------------
304     call rndcloud(iras,ncrnd,rnd,myid)
305    
306     do l=1,lm
307     do j=1,jm
308     do i=1,im
309 molod 1.21 dumoist(i,j,l) = 0.
310     dvmoist(i,j,l) = 0.
311 molod 1.1 dtmoist(i,j,l) = 0.
312 molod 1.21 do nt = 1,ntracerin
313 molod 1.1 dqmoist(i,j,l,nt) = 0.
314     enddo
315     enddo
316     enddo
317     enddo
318    
319     C***********************************************************************
320     C **** LOOP OVER NPCS PEICES ****
321     C **********************************************************************
322    
323     DO 1000 NN = 1,NPCS
324    
325     C **********************************************************************
326     C **** VARIABLE INITIALIZATION ****
327     C **********************************************************************
328    
329     CALL STRIP ( pigather, SP ,im*jm,ISTRIP,1 ,NN )
330     CALL STRIP ( pkzgather, PLK ,im*jm,ISTRIP,lm,NN )
331 molod 1.6 CALL STRIP ( pkegather, PLKE ,im*jm,ISTRIP,lm+1,NN )
332     CALL STRIP ( plzgather, PL ,im*jm,ISTRIP,lm,NN )
333     CALL STRIP ( plegather, PLE ,im*jm,ISTRIP,lm+1,NN )
334     CALL STRIP ( dpgather, dp ,im*jm,ISTRIP,lm,NN )
335 molod 1.1 CALL STRIP ( thgather, TH ,im*jm,ISTRIP,lm,NN )
336     CALL STRIP ( shgather, SHL ,im*jm,ISTRIP,lm,NN )
337     CALL STRINT( levgather, pbl ,im*jm,ISTRIP,1 ,NN )
338    
339 molod 1.21 do nt = 1,ntracer-ptracer
340     call strip ( ugather(1,1,nt), ul(1,1,nt),im*jm,istrip,lm,nn )
341     enddo
342 molod 1.1
343     C **********************************************************************
344     C **** SETUP FOR RAS CUMULUS PARAMETERIZATION ****
345     C **********************************************************************
346    
347     DO L = 1,lm
348     DO I = 1,ISTRIP
349     TH(I,L) = TH(I,L) * P0KAPPA
350     CLMAXO(I,L) = 0.
351     CLBOTH(I,L) = 0.
352     cldmas(I,L) = 0.
353     detrain(I,L) = 0.
354     ENDDO
355     ENDDO
356    
357     do L = 1,lm
358     depths(L) = 0
359     enddo
360    
361     numdeps = 0
362     do L = nsubmin,nltop,-1
363     nindeces(L) = 0
364     do i = 1,istrip
365     if(pbl(i).eq.L) nindeces(L) = nindeces(L) + 1
366     enddo
367     if(nindeces(L).gt.0) then
368     numdeps = numdeps + 1
369     depths(numdeps) = L
370     endif
371     enddo
372    
373     C Initiate a do-loop around RAS for the number of different
374     C sub-cloud layer depths in this strip
375     C --If all subcloud depths are the same, execute loop once
376     C Otherwise loop over different subcloud layer depths
377    
378     num = 1
379     DO iloop = 1,numdeps
380    
381     nsubcl = depths(iloop)
382    
383     c Compute sub-cloud values for Temperature and Spec.Hum.
384     c ------------------------------------------------------
385     DO 600 I=num,num+nindeces(nsubcl)-1
386     TMP1(I,2) = 0.
387     TMP1(I,3) = 0.
388     600 CONTINUE
389    
390     NLRAS = NSUBCL - NLTOP + 1
391     DO 601 L=NSUBCL,lm
392     DO 602 I=num,num+nindeces(nsubcl)-1
393     TMP1(I,2) = TMP1(I,2) + (PLE(I,L+1)-PLE(I,L))*TH (I,L)/sp(i)
394     TMP1(I,3) = TMP1(I,3) + (PLE(I,L+1)-PLE(I,L))*SHL(I,L)/sp(i)
395     602 CONTINUE
396     601 CONTINUE
397     DO 603 I=num,num+nindeces(nsubcl)-1
398     TMP1(I,4) = 1. / ( (PLE(I,lm+1)-PLE(I,NSUBCL))/sp(I) )
399     TH(I,NSUBCL) = TMP1(I,2)*TMP1(I,4)
400     SHL(I,NSUBCL) = TMP1(I,3)*TMP1(I,4)
401     603 CONTINUE
402    
403     c Save initial value of tracers and compute sub-cloud value
404     c ---------------------------------------------------------
405 molod 1.21 DO NT = 1,ntracer-ptracer
406     do L = 1,lm
407     do i = num,num+nindeces(nsubcl)-1
408     saveu(i,L,nt) = ul(i,L,nt)
409     enddo
410     enddo
411     DO I=num,num+nindeces(nsubcl)-1
412     TMP1(I,2) = 0.
413     ENDDO
414     DO L=NSUBCL,lm
415     DO I=num,num+nindeces(nsubcl)-1
416     TMP1(I,2) = TMP1(I,2)+(PLE(I,L+1)-PLE(I,L))*UL(I,L,NT)/sp(i)
417     ENDDO
418     ENDDO
419     DO I=num,num+nindeces(nsubcl)-1
420     UL(I,NSUBCL,NT) = TMP1(I,2)*TMP1(I,4)
421     usubcl(i,nt) = ul(i,nsubcl,nt)
422     ENDDO
423     ENDDO
424 molod 1.1
425     c Compute Pressure Arrays for RAS
426     c -------------------------------
427     DO 111 L=1,lm
428     DO 112 I=num,num+nindeces(nsubcl)-1
429     TMP4(I,L) = PLE(I,L)
430     112 CONTINUE
431     111 CONTINUE
432     DO I=num,num+nindeces(nsubcl)-1
433     TMP5(I,1) = PTOPKAP / P0KAPPA
434     ENDDO
435     DO L=2,lm
436     DO I=num,num+nindeces(nsubcl)-1
437 molod 1.6 TMP5(I,L) = PLKE(I,L)*P0KINV
438 molod 1.1 ENDDO
439     ENDDO
440     DO I=num,num+nindeces(nsubcl)-1
441     TMP4(I,lm+1) = PLE (I,lm+1)
442 molod 1.6 TMP5(I,lm+1) = PLKE(I,lm+1)*P0KINV
443 molod 1.1 ENDDO
444     DO 113 I=num,num+nindeces(nsubcl)-1
445     TMP4(I,NSUBCL+1) = PLE (I,lm+1)
446 molod 1.6 TMP5(I,NSUBCL+1) = PLKE(I,lm+1)*P0KINV
447 molod 1.1 113 CONTINUE
448    
449     do i=num,num+nindeces(nsubcl)-1
450     C Temperature at top of sub-cloud layer
451     tmp2(i,1) = TH(i,NSUBCL) * PLKE(i,NSUBCL)/P0KAPPA
452     C Pressure at top of sub-cloud layer
453     tmp2(i,2) = tmp4(i,nsubcl)
454     enddo
455    
456     C CHANGED THIS: no RH requirement for RAS
457     c call vqsat ( tmp2(num,1),tmp2(num,2),tmp2(num,3),
458     c . dum,.false.,nindeces(nsubcl) )
459     c do i=num,num+nindeces(nsubcl)-1
460     c rh = SHL(I,NSUBCL) / tmp2(i,3)
461     c if (rh .le. 0.85) then
462     c rhfrac(i) = 0.
463     c else if (rh .ge. 0.95) then
464     c rhfrac(i) = 1.
465     c else
466     c rhfrac(i) = (rh-0.85)*10.
467     c endif
468     c enddo
469     do i=num,num+nindeces(nsubcl)-1
470     rhfrac(i) = 1.
471     enddo
472    
473     C Compute RH threshold for Large-scale condensation
474     C Used in Slingo-Ritter clouds as well - define offset between SR and LS
475    
476     C Top level of atan func above this rh_threshold = rhmin
477     pup = 600.
478     do i=num,num+nindeces(nsubcl)-1
479 molod 1.2 do L = nsubcl, lm
480     rhcrit(i,L) = 1.
481     enddo
482     do L = 1, nsubcl-1
483 molod 1.6 pcheck = pl(i,L)
484 molod 1.2 if (pcheck .le. pup) then
485     rhcrit(i,L) = rhmin
486     else
487 molod 1.6 ppbl = pl(i,nsubcl)
488 molod 1.2 rhcrit(i,L) = rhmin + (1.-rhmin)/(19.) *
489     . ((atan( (2.*(pcheck-pup)/(ppbl-pup)-1.) *
490 molod 1.1 . tan(20.*pi/21.-0.5*pi) )
491     . + 0.5*pi) * 21./pi - 1.)
492 molod 1.2 endif
493     enddo
494 molod 1.1 enddo
495    
496     c Save Initial Values of Temperature and Specific Humidity
497     c --------------------------------------------------------
498     do L = 1,lm
499     do i = num,num+nindeces(nsubcl)-1
500     saveth(i,L) = th (i,L)
501     saveq (i,L) = shl(i,L)
502     PCPEN (i,L) = 0.
503     CLFRAC(i,L) = 0.
504     enddo
505     enddo
506    
507     CALL RAS ( NN,istrip,nindeces(nsubcl),NLRAS,NLTOP,lm,TMSTP
508 molod 1.21 1, UL(num,1,1),ntracedim,ntracex,TH(num,NLTOP),SHL(num,NLTOP)
509 molod 1.1 2, TMP4(num,NLTOP), TMP5(num,NLTOP),rnd, ncrnd, PCPEN(num,NLTOP)
510     3, CLBOTH(num,NLTOP), CLFRAC(num,NLTOP)
511     4, cldmas(num,nltop), detrain(num,nltop)
512     8, cp,grav,rkappa,alhl,rhfrac(num),rasmax )
513    
514     c Compute Diagnostic CLDMAS in RAS Subcloud Layers
515     c ------------------------------------------------
516     do L=nsubcl,lm
517     do I=num,num+nindeces(nsubcl)-1
518 molod 1.6 dum = dp(i,L)/(ple(i,lm+1)-ple(i,nsubcl))
519 molod 1.1 cldmas(i,L) = cldmas(i,L-1) - dum*cldmas(i,nsubcl-1)
520     enddo
521     enddo
522    
523     c Update Theta and Moisture due to RAS
524     c ------------------------------------
525     DO L=1,nsubcl
526     DO I=num,num+nindeces(nsubcl)-1
527     CVTH(I,L) = (TH (I,L) - saveth(i,l))
528     CVQ (I,L) = (SHL(I,L) - saveq (i,l))
529     ENDDO
530     ENDDO
531     DO L=nsubcl+1,lm
532     DO I=num,num+nindeces(nsubcl)-1
533     CVTH(I,L) = cvth(i,nsubcl)
534     CVQ (I,L) = cvq (i,nsubcl)
535     ENDDO
536     ENDDO
537    
538     DO L=nsubcl+1,lm
539     DO I=num,num+nindeces(nsubcl)-1
540     TH (I,L) = saveth(i,l) + cvth(i,l)
541     SHL(I,L) = saveq (i,l) + cvq (i,l)
542     ENDDO
543     ENDDO
544     DO L=1,lm
545     DO I=num,num+nindeces(nsubcl)-1
546     CVTH(I,L) = CVTH(I,L) *P0KINV*SP(I)*tminv
547     CVQ (I,L) = CVQ (I,L) *SP(I)*tminv
548     ENDDO
549     ENDDO
550    
551     c Compute Tracer Tendency due to RAS
552     c ----------------------------------
553 molod 1.21 do nt = 1,ntracer-ptracer
554     DO L=1,nsubcl-1
555     DO I=num,num+nindeces(nsubcl)-1
556     CVU(I,L,nt) = ( UL(I,L,nt)-saveu(i,l,nt) )*sp(i)*tminv
557     ENDDO
558     ENDDO
559     DO L=nsubcl,lm
560     DO I=num,num+nindeces(nsubcl)-1
561     if( usubcl(i,nt).ne.0.0 ) then
562     cvu(i,L,nt) = ( ul(i,nsubcl,nt)-usubcl(i,nt) ) *
563     . ( saveu(i,L,nt)/usubcl(i,nt) )*sp(i)*tminv
564     else
565     cvu(i,L,nt) = 0.0
566     endif
567     ENDDO
568     ENDDO
569     enddo
570 molod 1.1
571     c Compute Diagnostic PSUBCLD (Subcloud Layer Pressure)
572     c ----------------------------------------------------
573     do i=num,num+nindeces(nsubcl)-1
574     lras = .false.
575     do L=nltop,nsubcl
576     if( cvq(i,L).ne.0.0 ) lras = .true.
577     enddo
578     psubcld (i) = 0.0
579     psubcld_cnt(i) = 0.0
580     if( lras ) then
581     psubcld (i) = sp(i)+ptop-ple(i,nsubcl)
582     psubcld_cnt(i) = 1.0
583     endif
584     enddo
585    
586    
587     C End of subcloud layer depth loop (iloop)
588    
589     num = num+nindeces(nsubcl)
590    
591     ENDDO
592    
593     C **********************************************************************
594     C **** TENDENCY UPDATES ****
595     C **** (Keep 'Gathered' tendencies in 'gather' arrays now) ****
596     C **********************************************************************
597    
598     call paste( CVTH,deltgather,istrip,im*jm,lm,NN )
599     call paste( CVQ,delqgather,istrip,im*jm,lm,NN )
600 molod 1.21 do nt = 1,ntracer-ptracer
601     call paste( CVU(1,1,nt),delugather(1,1,nt),istrip,im*jm,lm,NN )
602     enddo
603 molod 1.1
604     C **********************************************************************
605     C And now paste some arrays for filling diagnostics
606     C (use pkegather to hold detrainment and tmpgather for cloud mass flux)
607     C **********************************************************************
608    
609 molod 1.32 call paste( cldmas,tmpgather,istrip,im*jm,lm,NN)
610     call paste(detrain,pkegather,istrip,im*jm,lm,NN)
611 molod 1.1 call paste(psubcld ,psubcldg ,istrip,im*jm,1,NN)
612     call paste(psubcld_cnt,psubcldgc,istrip,im*jm,1,NN)
613    
614     C *********************************************************************
615     C **** RE-EVAPORATION OF PENETRATING CONVECTIVE RAIN ****
616     C *********************************************************************
617    
618     CALL STRIP ( thgather,TH ,im*jm,ISTRIP,lm,NN)
619     CALL STRIP ( shgather,SHL,im*jm,ISTRIP,lm,NN)
620     DO L=1,lm
621     DO I=1,ISTRIP
622     TH(I,L) = TH(I,L) + CVTH(I,L)*tmstp/SP(I)
623     SHL(I,L) = SHL(I,L) + CVQ(I,L)*tmstp/SP(I)
624     TL(I,L) = TH(I,L)*PLK(I,L)
625     saveth(I,L) = th(I,L)
626     saveq (I,L) = SHL(I,L)
627     ENDDO
628     ENDDO
629    
630 molod 1.6 CALL RNEVP (NN,ISTRIP,lm,TL,SHL,PCPEN,PL,CLFRAC,SP,DP,PLKE,
631 molod 1.1 . PLK,TH,TMP1,TMP2,TMP3,ITMP1,ITMP2,PCNET,PRECIP,
632 molod 1.14 . CLSBTH,TMSTP,one,cp,grav,alhl,gamfac,cldlz,rhcrit,offset,alpha)
633 molod 1.1
634     C **********************************************************************
635     C **** TENDENCY UPDATES ****
636     C **********************************************************************
637    
638     DO L=1,lm
639    
640     DO I =1,ISTRIP
641     TMP1(I,L) = sp(i) * (SHL(I,L)-saveq(I,L)) * tminv
642     ENDDO
643     CALL PSTBMP(TMP1(1,L),delqgather(1,L),ISTRIP,im*jm,1,NN)
644    
645     DO I =1,ISTRIP
646     TMP1(I,L) = sp(i) * ((TL(I,L)/PLK(I,L))-saveth(i,l)) * tminv
647     ENDDO
648     CALL PSTBMP(TMP1(1,L),deltgather(1,L),ISTRIP,im*jm,1,NN)
649    
650     C Paste rain evap tendencies into arrays for diagnostic output
651     c ------------------------------------------------------------
652     DO I =1,ISTRIP
653     TMP1(I,L) = ((TL(I,L)/PLK(I,L))-saveth(i,l))*plk(i,l)*sday*tminv
654     ENDDO
655     call paste(tmp1(1,L),deltrnev(1,L),istrip,im*jm,1,NN)
656    
657     DO I =1,ISTRIP
658     TMP1(I,L) = (SHL(I,L)-saveq(I,L)) * 1000. * sday * tminv
659     ENDDO
660     call paste(tmp1(1,L),delqrnev(1,L),istrip,im*jm,1,NN)
661    
662     ENDDO
663    
664     C *********************************************************************
665     C Add Non-Precipitating Clouds where the relative
666     C humidity is less than 100%
667     C Apply Cloud Top Entrainment Instability
668     C *********************************************************************
669    
670     do L=1,lm
671     do i=1,istrip
672     srcld(i,L) = -clsbth(i,L)
673     enddo
674     enddo
675    
676     call srclouds (saveth,saveq,plk,pl,plke,clsbth,cldlz,istrip,lm,
677     . rhcrit,offset,alpha)
678    
679     do L=1,lm
680     do i=1,istrip
681     srcld(i,L) = srcld(i,L)+clsbth(i,L)
682     enddo
683     enddo
684    
685     C *********************************************************************
686     C **** PASTE CLOUD AMOUNTS ****
687     C *********************************************************************
688    
689     call paste ( srcld, cldsr,istrip,im*jm,lm,nn )
690     call paste ( cldlz,cldwater,istrip,im*jm,lm,nn )
691     call paste ( clsbth, cldls,istrip,im*jm,lm,nn )
692     call paste ( clboth, cpen ,istrip,im*jm,lm,nn )
693    
694     c compute Total Accumulated Precip for Landsurface Model
695     c ------------------------------------------------------
696     do i = 1,istrip
697     C Initialize Rainlsp, Rainconv and Snowfall
698     tmp1(i,1) = 0.0
699     tmp1(i,2) = 0.0
700     tmp1(i,3) = 0.0
701     enddo
702    
703     do i = 1,istrip
704     prep(i) = PRECIP(I) + PCNET(I)
705     tmp1(i,1) = PRECIP(I)
706     tmp1(i,2) = pcnet(i)
707     enddo
708     c
709     c check whether there is snow
710     c-------------------------------------------------------
711     c snow algorthm:
712     c if temperature profile from the surface level to 700 mb
713     c uniformaly c below zero, then precipitation (total) is
714     c snowfall. Else there is no snow.
715     c-------------------------------------------------------
716    
717     do i = 1,istrip
718     snowcrit=0
719     do l=lup,lm
720     if (saveth(i,l)*plk(i,l).le. tice ) then
721     snowcrit=snowcrit+1
722     endif
723     enddo
724     if (snowcrit .eq. (lm-lup+1)) then
725     tmp1(i,3) = prep(i)
726     tmp1(i,1)=0.0
727     tmp1(i,2)=0.0
728     endif
729     enddo
730    
731     CALL paste (tmp1(1,1), lsp_new,ISTRIP,im*jm,1,NN)
732     CALL paste (tmp1(1,2),conv_new,ISTRIP,im*jm,1,NN)
733     CALL paste (tmp1(1,3),snow_new,ISTRIP,im*jm,1,NN)
734     CALL paste (pcnet,raincgath,ISTRIP,im*jm,1,NN)
735    
736     C *********************************************************************
737     C **** End Major Stripped Region ****
738     C *********************************************************************
739    
740     1000 CONTINUE
741    
742     C Large Scale Rainfall, Conv rain, and snowfall
743     c ---------------------------------------------
744     call back2grd ( lsp_new,pblindex, lsp_new,im*jm)
745     call back2grd (conv_new,pblindex,conv_new,im*jm)
746     call back2grd (snow_new,pblindex,snow_new,im*jm)
747     call back2grd (raincgath,pblindex,raincgath,im*jm)
748    
749     c Subcloud Layer Pressure
750     c -----------------------
751     call back2grd (psubcldg ,pblindex,psubcldg ,im*jm)
752     call back2grd (psubcldgc,pblindex,psubcldgc,im*jm)
753    
754     do L = 1,lm
755     C Delta theta,q, convective, max and ls clouds
756     c --------------------------------------------
757     call back2grd (deltgather(1,L),pblindex, dtmoist(1,1,L) ,im*jm)
758     call back2grd (delqgather(1,L),pblindex, dqmoist(1,1,L,1),im*jm)
759     call back2grd ( cpen(1,1,L),pblindex, cpen(1,1,L) ,im*jm)
760     call back2grd ( cldls(1,1,L),pblindex, cldls(1,1,L) ,im*jm)
761     call back2grd (cldwater(1,1,L),pblindex,cldwater(1,1,L) ,im*jm)
762     call back2grd ( pkzgather(1,L),pblindex, pkzgather(1,L) ,im*jm)
763    
764     C Diagnostics:
765     c ------------
766 molod 1.32 call back2grd(tmpgather(1,L),pblindex,
767 molod 1.1 . tmpgather(1,L),im*jm)
768 molod 1.32 call back2grd(pkegather(1,L),pblindex,
769 molod 1.1 . pkegather(1,L),im*jm)
770 molod 1.32 call back2grd(deltrnev(1,L),pblindex,
771 molod 1.1 . deltrnev(1,L),im*jm)
772 molod 1.32 call back2grd(delqrnev(1,L),pblindex,
773 molod 1.1 . delqrnev(1,L),im*jm)
774 molod 1.32 call back2grd(cldsr(1,1,L),pblindex,
775 molod 1.1 . cldsr(1,1,L),im*jm)
776     enddo
777    
778 molod 1.21 c General Tracers
779     c ---------------
780     do nt = 1,ntracerin-ptracer
781     do L = 1,lm
782     call back2grd (delugather(1,L,nt),pblindex,
783     . dqmoist(1,1,L,ptracer+nt),im*jm)
784     enddo
785     enddo
786    
787     if(cumfric) then
788    
789     c U and V for cumulus friction
790     c ----------------------------
791     do L = 1,lm
792     call back2grd (delugather(1,L,ntracerin-ptracer+1),pblindex,
793     . dumoist(1,1,L),im*jm)
794     call back2grd (delugather(1,L,ntracerin-ptracer+2),pblindex,
795     . dvmoist(1,1,L),im*jm)
796     enddo
797    
798     C Remove pi-weighting for u and v tendencies
799     do j = 1,jm
800     do i = 1,im
801     tmpimjm(i,j) = 1./pz(i,j)
802     enddo
803     enddo
804     do L = 1,lm
805     do j = 1,jm
806     do i = 1,im
807     dumoist(i,j,L) = dumoist(i,j,L) * tmpimjm(i,j)
808 molod 1.22 dvmoist(i,j,L) = dvmoist(i,j,L) * tmpimjm(i,j)
809 molod 1.21 enddo
810     enddo
811     enddo
812 molod 1.1
813 molod 1.22
814 molod 1.21 endif
815 molod 1.1
816     C **********************************************************************
817     C BUMP DIAGNOSTICS
818     C **********************************************************************
819    
820 molod 1.32 #ifdef ALLOW_DIAGNOSTICS
821 molod 1.16
822 molod 1.1 c Sub-Cloud Layer
823     c -------------------------
824 molod 1.32 if(diagnostics_is_on('PSUBCLD ',myid) .and.
825     . diagnostics_is_on('PSUBCLDC',myid) ) then
826     call diagnostics_fill(psubcldg,'PSUBCLD ',0,1,3,bi,bj,myid)
827     call diagnostics_fill(psubcldgc,'PSUBCLDC',0,1,3,bi,bj,myid)
828 molod 1.1 endif
829 molod 1.32
830 molod 1.1 c Non-Precipitating Cloud Fraction
831     c --------------------------------
832 molod 1.32 if(diagnostics_is_on('CLDNP ',myid) ) then
833     do L=1,lm
834     do j=1,jm
835     do i=1,im
836     tmpdiag(i,j) = cldsr(i,j,L)
837     enddo
838     enddo
839     call diagnostics_fill(tmpdiag,'CLDNP ',L,1,3,bi,bj,myid)
840 molod 1.1 enddo
841     endif
842    
843     c Moist Processes Heating Rate
844     c ----------------------------
845 molod 1.32 if(diagnostics_is_on('MOISTT ',myid) ) then
846     do L=1,lm
847     do j=1,jm
848     do i=1,im
849     indgath = (j-1)*im + i
850     tmpdiag(i,j)=(dtmoist(i,j,L)*sday*pkzgather(indgath,L)/pz(i,j))
851     enddo
852     enddo
853     call diagnostics_fill(tmpdiag,'MOISTT ',L,1,3,bi,bj,myid)
854 molod 1.1 enddo
855     endif
856    
857     c Moist Processes Moistening Rate
858     c -------------------------------
859 molod 1.32 if(diagnostics_is_on('MOISTQ ',myid) ) then
860     do L=1,lm
861     do j=1,jm
862     do i=1,im
863     tmpdiag(i,j)=(dqmoist(i,j,L,1)*sday*1000./pz(i,j))
864     enddo
865     enddo
866     call diagnostics_fill(tmpdiag,'MOISTQ ',L,1,3,bi,bj,myid)
867 molod 1.1 enddo
868     endif
869    
870     c Cloud Mass Flux
871     c ---------------
872 molod 1.32 if(diagnostics_is_on('CLDMAS ',myid) ) then
873     do L=1,lm
874     do j=1,jm
875     do i=1,im
876     indgath = (j-1)*im + i
877     tmpdiag(i,j)=tmpgather(indgath,L)
878     enddo
879     enddo
880     call diagnostics_fill(tmpdiag,'CLDMAS ',L,1,3,bi,bj,myid)
881     enddo
882 molod 1.1 endif
883    
884     c Detrained Cloud Mass Flux
885     c -------------------------
886 molod 1.32 if(diagnostics_is_on('DTRAIN ',myid) ) then
887     do L=1,lm
888     do j=1,jm
889     do i=1,im
890     indgath = (j-1)*im + i
891     tmpdiag(i,j)=pkegather(indgath,L)
892     enddo
893     enddo
894     call diagnostics_fill(tmpdiag,'DTRAIN ',L,1,3,bi,bj,myid)
895     enddo
896 molod 1.1 endif
897    
898     c Grid-Scale Condensational Heating Rate
899     c --------------------------------------
900 molod 1.32 if(diagnostics_is_on('DTLS ',myid) ) then
901     do L=1,lm
902     do j=1,jm
903     do i=1,im
904     indgath = (j-1)*im + i
905     tmpdiag(i,j)=deltrnev(indgath,L)
906     enddo
907     enddo
908     call diagnostics_fill(tmpdiag,'DTLS ',L,1,3,bi,bj,myid)
909     enddo
910 molod 1.1 endif
911    
912     c Grid-Scale Condensational Moistening Rate
913     c -----------------------------------------
914 molod 1.32 if(diagnostics_is_on('DQLS ',myid) ) then
915     do L=1,lm
916     do j=1,jm
917     do i=1,im
918     indgath = (j-1)*im + i
919     tmpdiag(i,j)=delqrnev(indgath,L)
920     enddo
921     enddo
922     call diagnostics_fill(tmpdiag,'DQLS ',L,1,3,bi,bj,myid)
923     enddo
924 molod 1.1 endif
925    
926     c Total Precipitation
927     c -------------------
928 molod 1.32 if(diagnostics_is_on('PREACC ',myid) ) then
929     do j=1,jm
930     do i=1,im
931     tmpdiag(i,j) = (lsp_new(I,j) + snow_new(I,j) + conv_new(i,j))
932     . *sday*tminv
933     enddo
934     enddo
935 jmc 1.33 call diagnostics_fill(tmpdiag,'PREACC ',0,1,3,bi,bj,myid)
936 molod 1.1 endif
937    
938     c Convective Precipitation
939     c ------------------------
940 molod 1.32 if(diagnostics_is_on('PRECON ',myid) ) then
941     do j=1,jm
942     do i=1,im
943     indgath = (j-1)*im + i
944     tmpdiag(i,j) = raincgath(indgath)*sday*tminv
945     enddo
946     enddo
947 jmc 1.33 call diagnostics_fill(tmpdiag,'PRECON ',0,1,3,bi,bj,myid)
948 molod 1.1 endif
949    
950 molod 1.32 #endif
951    
952 molod 1.1 C **********************************************************************
953     C **** Fill Rainfall and Snowfall Arrays for Land Surface Model ****
954     C **** Note: Precip Rates work when DT(turb)<DT(moist) ****
955     C **********************************************************************
956    
957     do j = 1,jm
958     do i = 1,im
959     rainlsp (i,j) = rainlsp (i,j) + lsp_new(i,j)*tminv
960     rainconv(i,j) = rainconv(i,j) + conv_new(i,j)*tminv
961     snowfall(i,j) = snowfall(i,j) + snow_new(i,j)*tminv
962     enddo
963     enddo
964    
965     C **********************************************************************
966     C *** Compute Time-averaged Quantities for Radiation ***
967     C *** CPEN => Cloud Fraction from RAS ***
968     C *** CLDLS => Cloud Fraction from RNEVP ***
969     C **********************************************************************
970    
971     do j = 1,jm
972     do i = 1,im
973     cldhi (i,j) = 0.
974     cldmid(i,j) = 0.
975     cldlow(i,j) = 0.
976     cldtmp(i,j) = 0.
977     cldprs(i,j) = 0.
978     tmpimjm(i,j) = 0.
979     enddo
980     enddo
981    
982     c Set Moist-Process Memory Coefficient
983     c ------------------------------------
984     cldras_mem = 1.0-tmstp/ 3600.0
985     cldlsp_mem = 1.0-tmstp/(3600.0*3)
986    
987     do L = 1,lm
988     do i = 1,im*jm
989 molod 1.6 plev = pl(i,L)
990 molod 1.1
991     c Compute Time-averaged Cloud and Water Amounts for Longwave Radiation
992     c --------------------------------------------------------------------
993     watnow = cldwater(i,1,L)
994     if( plev.le.500.0 ) then
995 ce107 1.34 cldras = min( max( cldras_lw(i,1,L)*cldras_mem,cpen(i,1,L)),1.0 _d 0)
996 molod 1.1 else
997     cldras = 0.0
998     endif
999 ce107 1.34 cldlsp = min( max( cldlsp_lw(i,1,L)*cldlsp_mem,cldls(i,1,L)),1.0 _d 0)
1000 molod 1.1
1001     if( cldras.lt.cldmin ) cldras = 0.0
1002     if( cldlsp.lt.cldmin ) cldlsp = 0.0
1003    
1004     cldnow = max( cldlsp,cldras )
1005    
1006     lwlz(i,1,L) = ( nlwlz*lwlz(i,1,L) + watnow)/(nlwlz +1)
1007     cldtot_lw(i,1,L) = (nlwcld*cldtot_lw(i,1,L) + cldnow)/(nlwcld+1)
1008     cldlsp_lw(i,1,L) = (nlwcld*cldlsp_lw(i,1,L) + cldlsp)/(nlwcld+1)
1009     cldras_lw(i,1,L) = (nlwcld*cldras_lw(i,1,L) + cldras)/(nlwcld+1)
1010    
1011    
1012     c Compute Time-averaged Cloud and Water Amounts for Shortwave Radiation
1013     c ---------------------------------------------------------------------
1014     watnow = cldwater(i,1,L)
1015     if( plev.le.500.0 ) then
1016 ce107 1.34 cldras = min( max(cldras_sw(i,1,L)*cldras_mem, cpen(i,1,L)),1.0 _d 0)
1017 molod 1.1 else
1018     cldras = 0.0
1019     endif
1020 ce107 1.34 cldlsp = min( max(cldlsp_sw(i,1,L)*cldlsp_mem,cldls(i,1,L)),1.0 _d 0)
1021 molod 1.1
1022     if( cldras.lt.cldmin ) cldras = 0.0
1023     if( cldlsp.lt.cldmin ) cldlsp = 0.0
1024    
1025     cldnow = max( cldlsp,cldras )
1026    
1027     swlz(i,1,L) = ( nswlz*swlz(i,1,L) + watnow)/(nswlz +1)
1028     cldtot_sw(i,1,L) = (nswcld*cldtot_sw(i,1,L) + cldnow)/(nswcld+1)
1029     cldlsp_sw(i,1,L) = (nswcld*cldlsp_sw(i,1,L) + cldlsp)/(nswcld+1)
1030     cldras_sw(i,1,L) = (nswcld*cldras_sw(i,1,L) + cldras)/(nswcld+1)
1031    
1032    
1033     c Compute Instantaneous Low-Mid-High Maximum Overlap Cloud Fractions
1034     c ----------------------------------------------------------------------
1035    
1036     if( L.lt.midlevel ) cldhi (i,1) = max( cldnow,cldhi (i,1) )
1037     if( L.ge.midlevel .and.
1038     . L.lt.lowlevel ) cldmid(i,1) = max( cldnow,cldmid(i,1) )
1039     if( L.ge.lowlevel ) cldlow(i,1) = max( cldnow,cldlow(i,1) )
1040    
1041     c Compute Cloud-Top Temperature and Pressure
1042     c ------------------------------------------
1043     cldtmp(i,1) = cldtmp(i,1) + cldnow*pkzgather(i,L)
1044     . * ( tz(i,1,L) + dtmoist(i,1,L)*tmstp/pz(i,1) )
1045     cldprs(i,1) = cldprs(i,1) + cldnow*plev
1046     tmpimjm(i,1) = tmpimjm(i,1) + cldnow
1047    
1048     enddo
1049     enddo
1050    
1051 molod 1.21 c Compute Instantaneous Total 2-D Cloud Fraction
1052 molod 1.1 c ----------------------------------------------
1053     do j = 1,jm
1054     do i = 1,im
1055     totcld(i,j) = 1.0 - (1.-cldhi (i,j))
1056     . * (1.-cldmid(i,j))
1057     . * (1.-cldlow(i,j))
1058     enddo
1059     enddo
1060    
1061    
1062     C **********************************************************************
1063     C *** Fill Cloud Top Pressure and Temperature Diagnostic ***
1064     C **********************************************************************
1065    
1066 molod 1.32 #ifdef ALLOW_DIAGNOSTICS
1067     if(diagnostics_is_on('CLDTMP ',myid) .and.
1068     . diagnostics_is_on('CTTCNT ',myid) ) then
1069     do j=1,jm
1070     do i=1,im
1071     if( cldtmp(i,j).gt.0. ) then
1072     tmpdiag(i,j) = cldtmp(i,j)*totcld(i,j)/tmpimjm(i,j)
1073     tmpdiag2(i,j) = totcld(i,j)
1074     else
1075     tmpdiag(i,j) = 0.
1076     tmpdiag2(i,j) = 0.
1077     endif
1078     enddo
1079     enddo
1080     call diagnostics_fill(tmpdiag,'CLDTMP ',0,1,3,bi,bj,myid)
1081     call diagnostics_fill(tmpdiag2,'CTTCNT ',0,1,3,bi,bj,myid)
1082 molod 1.1 endif
1083    
1084 molod 1.32 if(diagnostics_is_on('CLDPRS ',myid) .and.
1085     . diagnostics_is_on('CTPCNTC ',myid) ) then
1086     do j=1,jm
1087     do i=1,im
1088     if( cldprs(i,j).gt.0. ) then
1089     tmpdiag(i,j) = cldprs(i,j)*totcld(i,j)/tmpimjm(i,j)
1090     tmpdiag2(i,j) = totcld(i,j)
1091     else
1092     tmpdiag(i,j) = 0.
1093     tmpdiag2(i,j) = 0.
1094     endif
1095     enddo
1096     enddo
1097     call diagnostics_fill(tmpdiag,'CLDPRS ',0,1,3,bi,bj,myid)
1098     call diagnostics_fill(tmpdiag2,'CTPCNT ',0,1,3,bi,bj,myid)
1099 molod 1.1 endif
1100 molod 1.32
1101     #endif
1102 molod 1.1
1103     C **********************************************************************
1104     C **** INCREMENT COUNTERS ****
1105     C **********************************************************************
1106    
1107     nlwlz = nlwlz + 1
1108     nswlz = nswlz + 1
1109    
1110     nlwcld = nlwcld + 1
1111     nswcld = nswcld + 1
1112    
1113     RETURN
1114     END
1115 molod 1.16 SUBROUTINE RAS( NN, LNG, LENC, K, NLTOP, nlayr, DT
1116 molod 1.21 *, UOI, ntracedim, ntracer, POI, QOI, PRS, PRJ, rnd, ncrnd
1117     *, RAINS, CLN, CLF, cldmas, detrain
1118     *, cp,grav,rkappa,alhl,rhfrac,rasmax )
1119 molod 1.1 C
1120     C*********************************************************************
1121     C********************* SUBROUTINE RAS *****************************
1122     C********************** 16 MARCH 1988 ******************************
1123     C*********************************************************************
1124     C
1125 molod 1.8 implicit none
1126    
1127 molod 1.9 C Argument List
1128 molod 1.16 integer nn,lng,lenc,k,nltop,nlayr
1129 molod 1.21 integer ntracedim, ntracer
1130 molod 1.9 integer ncrnd
1131 molod 1.13 _RL dt
1132 molod 1.21 _RL UOI(lng,nlayr,ntracedim), POI(lng,K)
1133 molod 1.16 _RL QOI(lng,K), PRS(lng,K+1), PRJ(lng,K+1)
1134 molod 1.13 _RL rnd(ncrnd)
1135 molod 1.16 _RL RAINS(lng,K), CLN(lng,K), CLF(lng,K)
1136     _RL cldmas(lng,K), detrain(lng,K)
1137     _RL cp,grav,rkappa,alhl,rhfrac(lng),rasmax
1138 molod 1.9
1139     C Local Variables
1140 molod 1.16 _RL TCU(lng,K), QCU(lng,K)
1141 molod 1.21 _RL ucu(lng,K,ntracedim)
1142 molod 1.16 _RL ALF(lng,K), BET(lng,K), GAM(lng,K)
1143     *, ETA(lng,K), HOI(lng,K)
1144     *, PRH(lng,K), PRI(lng,K)
1145     _RL HST(lng,K), QOL(lng,K), GMH(lng,K)
1146    
1147     _RL TX1(lng), TX2(lng), TX3(lng), TX4(lng), TX5(lng)
1148     *, TX6(lng), TX7(lng), TX8(lng), TX9(lng)
1149 molod 1.21 *, TX11(lng), TX12(lng), TX13(lng), TX14(lng,ntracedim)
1150 molod 1.16 *, TX15(lng)
1151     *, WFN(lng)
1152     integer IA1(lng), IA2(lng), IA3(lng)
1153     _RL cloudn(lng), pcu(lng)
1154 molod 1.1
1155 molod 1.8 integer krmin,icm
1156 molod 1.13 _RL rknob, cmb2pa
1157 molod 1.8 PARAMETER (KRMIN=01)
1158     PARAMETER (ICM=1000)
1159     PARAMETER (CMB2PA=100.0)
1160     PARAMETER (rknob = 10.)
1161 molod 1.9
1162     integer IC(ICM), IRND(icm)
1163 molod 1.16 _RL cmass(lng,K)
1164 molod 1.9 LOGICAL SETRAS
1165 molod 1.24 integer ifound
1166     _RL temp
1167     _RL thbef(lng,K)
1168 molod 1.9
1169     integer i,L,nc,ib,nt
1170 molod 1.8 integer km1,kp1,kprv,kcr,kfx,ncmx
1171 molod 1.13 _RL p00, crtmsf, frac, rasblf
1172 molod 1.8
1173     do L = 1,k
1174     do I = 1,LENC
1175     rains(i,l) = 0.
1176     enddo
1177     enddo
1178 molod 1.1
1179     p00 = 1000.
1180     crtmsf = 0.
1181    
1182     C The numerator here is the fraction of the subcloud layer mass flux
1183     C allowed to entrain into the cloud
1184    
1185     CCC FRAC = 1./dt
1186 molod 1.24 CCC FRAC = 0.5/dt
1187 molod 1.1 FRAC = 0.5/dt
1188    
1189     KM1 = K - 1
1190     KP1 = K + 1
1191     C we want the ras adjustment time scale to be one hour (indep of dt)
1192     RASBLF = 1./3600.
1193     C
1194     KPRV = KM1
1195     C Removed KRMAX parameter
1196     KCR = MIN(KM1,nlayr-2)
1197 molod 1.24 KFX = KM1 - KCR
1198 molod 1.1 NCMX = KFX + NCRND
1199     C
1200     IF (KFX .GT. 0) THEN
1201     DO NC=1,KFX
1202     IC(NC) = K - NC
1203     ENDDO
1204     ENDIF
1205     C
1206     IF (NCRND .GT. 0) THEN
1207     DO I=1,ncrnd
1208     IRND(I) = (RND(I)-0.0005)*(KCR-KRMIN+1)
1209     IRND(I) = IRND(I) + KRMIN
1210     ENDDO
1211     C
1212     DO NC=1,NCRND
1213     IC(KFX+NC) = IRND(NC)
1214     ENDDO
1215     ENDIF
1216     C
1217     DO 100 NC=1,NCMX
1218     C
1219     IF (NC .EQ. 1 ) THEN
1220     SETRAS = .TRUE.
1221     ELSE
1222     SETRAS = .FALSE.
1223     ENDIF
1224     IB = IC(NC)
1225 molod 1.16
1226 molod 1.1 c Initialize Cloud Fraction Array
1227     c -------------------------------
1228     do i = 1,lenc
1229     cloudn(i) = 0.0
1230     enddo
1231    
1232 molod 1.16 CALL CLOUD(nn,lng, LENC, K, NLTOP, nlayr, IB, RASBLF,SETRAS,FRAC
1233 molod 1.1 *, CP, ALHL, RKAPPA, GRAV, P00, CRTMSF
1234 molod 1.21 *, POI, QOI, UOI, ntracedim, Ntracer, PRS, PRJ
1235 molod 1.1 *, PCU, CLOUDN, TCU, QCU, UCU, CMASS
1236     *, ALF, BET, GAM, PRH, PRI, HOI, ETA
1237     *, HST, QOL, GMH
1238     *, TX1, TX2, TX3, TX4, TX5, TX6, TX7, TX8, TX9
1239     *, WFN, TX11, TX12, TX13, TX14, TX15
1240     *, IA1,IA2,IA3,rhfrac)
1241    
1242     C Compute fraction of grid box into which rain re-evap occurs (clf)
1243     c -----------------------------------------------------------------
1244     do i = 1,lenc
1245    
1246     c mass in detrainment layer
1247     c -------------------------
1248     tx1(i) = cmb2pa * (prs(i,ib+1) - prs(i,ib))/(grav*dt)
1249    
1250     c ratio of detraining cloud mass to mass in detrainment layer
1251     c -----------------------------------------------------------
1252     tx1(i) = rhfrac(i)*rknob * cmass(i,ib) / tx1(i)
1253     if(cmass(i,K).gt.0.) clf(i,ib) = clf(i,ib) + tx1(i)
1254     if( clf(i,ib).gt.1.) clf(i,ib) = 1.
1255     enddo
1256    
1257     c Compute Total Cloud Mass Flux
1258     c *****************************
1259     do L=ib,k
1260     do i=1,lenc
1261     cmass(i,L) = rhfrac(i)*cmass(i,L) * dt
1262     enddo
1263     enddo
1264    
1265     do L=ib,k
1266     do i=1,lenc
1267     cldmas(i,L) = cldmas(i,L) + cmass(i,L)
1268     enddo
1269     enddo
1270    
1271     do i=1,lenc
1272     detrain(i,ib) = detrain(i,ib) + cmass(i,ib)
1273     enddo
1274    
1275     DO L=IB,K
1276     DO I=1,LENC
1277 molod 1.24 thbef(I,L) = POI(I,L)
1278 molod 1.1 POI(I,L) = POI(I,L) + TCU(I,L) * DT * rhfrac(i)
1279     QOI(I,L) = QOI(I,L) + QCU(I,L) * DT * rhfrac(i)
1280     ENDDO
1281     ENDDO
1282 molod 1.21 DO NT=1,Ntracer
1283     DO L=IB,K
1284     DO I=1,LENC
1285     UOI(I,L+nltop-1,NT)=UOI(I,L+nltop-1,NT)+UCU(I,L,NT)*DT*rhfrac(i)
1286     ENDDO
1287     ENDDO
1288     ENDDO
1289 molod 1.1 DO I=1,LENC
1290     rains(I,ib) = rains(I,ib) + PCU(I)*dt * rhfrac(i)
1291     ENDDO
1292    
1293 molod 1.24 do i = 1,lenc
1294     ifound = 0
1295     do L = 1,k
1296     if(tcu(i,L).ne.0.)ifound = ifound + 1
1297     enddo
1298     if(ifound.ne.0) then
1299     c print *,i,' made a cloud detraining at ',ib
1300     do L = 1,k
1301     temp = TCU(I,L) * DT * rhfrac(i)
1302     c write(6,122)L,thbef(i,L),poi(i,L),temp
1303     enddo
1304     endif
1305     enddo
1306    
1307 molod 1.1 100 CONTINUE
1308 molod 1.24
1309     122 format(' ',i3,' TH B ',e10.3,' TH A ',e10.3,' DTH ',e10.3)
1310 molod 1.1
1311     c Fill Convective Cloud Fractions based on 3-D Rain Amounts
1312     c ---------------------------------------------------------
1313     do L=k-1,1,-1
1314     do i=1,lenc
1315     tx1(i) = 100*(prs(i,L+1)-prs(i,L))/grav
1316     cln(i,L) = min(1600*rains(i,L)/tx1(i),rasmax )
1317     enddo
1318     enddo
1319    
1320     RETURN
1321     END
1322     subroutine rndcloud (iras,nrnd,rnd,myid)
1323     implicit none
1324     integer n,iras,nrnd,myid
1325 molod 1.13 _RL random_numbx
1326 jmc 1.29 c _RL rnd(nrnd)
1327     _RL rnd(*)
1328 molod 1.1 integer irm
1329     parameter (irm = 1000)
1330 molod 1.13 _RL random(irm)
1331 jmc 1.29 integer i,mcheck,iseed,indx
1332 molod 1.1 logical first
1333     data first /.true./
1334     integer iras0
1335     data iras0 /0/
1336     save random, iras0
1337    
1338 jmc 1.29 if(nrnd.eq.0)then
1339 molod 1.1 do i = 1,nrnd
1340     rnd(i) = 0
1341     enddo
1342 molod 1.15 if(first .and. myid.eq.1) print *,' NO RANDOM CLOUDS IN RAS '
1343 molod 1.1 go to 100
1344     endif
1345    
1346     mcheck = mod(iras-1,irm/nrnd)
1347    
1348 jmc 1.29 c print *,' RNDCLOUD: first ',first,' iras ',iras,' iras0 ',iras0
1349     c print *,' RNDCLOUD: irm,nrnd,mcheck=',irm,nrnd,mcheck
1350    
1351     if ( iras.eq.iras0 ) then
1352     C- Not the 1rst tile: we are all set (already done for the 1rst tile):
1353     c -----------------------------------------------------------------------
1354     indx = (iras-1)*nrnd
1355    
1356 molod 1.1 c First Time In From a Continuing RESTART (IRAS.GT.1) or Reading a New RESTART
1357 jmc 1.29 c -- or --
1358     c Multiple Time In But have Used Up all 1000 numbers (MCHECK.EQ.0)
1359 molod 1.1 c ----------------------------------------------------------------------------
1360 jmc 1.29 elseif ( first.and.(iras.gt.1) .or. mcheck.eq.0 ) then
1361     iseed = (iras-1-mcheck)*nrnd
1362 molod 1.1 call random_seedx(iseed)
1363     do i = 1,irm
1364 molod 1.12 random(i) = random_numbx(iseed)
1365 molod 1.1 enddo
1366 molod 1.16 indx = (iras-1)*nrnd
1367 molod 1.1
1368 jmc 1.29 if( myid.eq.1 ) print *, 'Creating Rand Numb Array in RNDCLOUD'
1369     & ,', iseed=', iseed
1370     if( myid.eq.1 ) print *, 'IRAS: ',iras,' IRAS0: ',iras0,
1371     & ' indx: ', mod(indx,irm)
1372 molod 1.1
1373     c Multiple Time In But have NOT Used Up all 1000 numbers (MCHECK.NE.0)
1374     c --------------------------------------------------------------------
1375     else
1376 molod 1.16 indx = (iras-1)*nrnd
1377 molod 1.1 endif
1378    
1379 molod 1.16 indx = mod(indx,irm)
1380 jmc 1.29 if( indx+nrnd.gt.irm ) then
1381     c if( myid.eq.1 .AND. iras.ne.iras0 ) print *,
1382     c & 'reach end of Rand Numb Array in RNDCLOUD',indx,irm-nrnd
1383     indx=irm-nrnd
1384     endif
1385    
1386 molod 1.1 do n = 1,nrnd
1387 molod 1.16 rnd(n) = random(indx+n)
1388 molod 1.1 enddo
1389    
1390     100 continue
1391     first = .false.
1392     iras0 = iras
1393 jmc 1.29
1394 molod 1.1 return
1395     end
1396 molod 1.12 function random_numbx(iseed)
1397 molod 1.1 implicit none
1398 molod 1.12 integer iseed
1399     real *8 seed,port_rand
1400 molod 1.13 _RL random_numbx
1401 molod 1.10 #ifdef CRAY
1402 molod 1.13 _RL ranf
1403 molod 1.1 random_numbx = ranf()
1404 molod 1.12 #else
1405 molod 1.10 #ifdef SGI
1406 molod 1.13 _RL rand
1407 molod 1.1 random_numbx = rand()
1408 jmc 1.26 #else
1409 jmc 1.27 seed = -1.d0
1410 jmc 1.26 random_numbx = port_rand(seed)
1411 molod 1.1 #endif
1412 molod 1.12 #endif
1413 molod 1.1 return
1414     end
1415     subroutine random_seedx (iseed)
1416     implicit none
1417     integer iseed
1418 molod 1.28 real *8 port_rand
1419 molod 1.10 #ifdef CRAY
1420 molod 1.1 call ranset (iseed)
1421 jmc 1.27 #else
1422 molod 1.10 #ifdef SGI
1423 molod 1.1 integer*4 seed
1424     seed = iseed
1425     call srand (seed)
1426 jmc 1.27 #else
1427     real*8 tmpRdN
1428     real*8 seed
1429     seed = iseed
1430     tmpRdN = port_rand(seed)
1431     #endif
1432 molod 1.1 #endif
1433     return
1434     end
1435 molod 1.16 SUBROUTINE CLOUD(nn,lng, LENC, K, NLTOP, nlayr, IC, RASALF
1436 molod 1.1 *, SETRAS, FRAC
1437     *, CP, ALHL, RKAP, GRAV, P00, CRTMSF
1438 molod 1.21 *, POI, QOI, UOI, ntracedim, Ntracer, PRS, PRJ
1439 molod 1.1 *, PCU, CLN, TCU, QCU, UCU, CMASS
1440     *, ALF, BET, GAM, PRH, PRI, HOL, ETA
1441     *, HST, QOL, GMH
1442     *, TX1, TX2, TX3, TX4, TX5, TX6, TX7, TX8, ALM
1443     *, WFN, AKM, QS1, CLF, UHT, WLQ
1444     *, IA, I1, I2,rhfrac)
1445     C
1446     C*********************************************************************
1447     C******************** Relaxed Arakawa-Schubert ***********************
1448     C********************* Plug Compatible Version **********************
1449     C************************ SUBROUTINE CLOUD ***************************
1450     C************************* 23 JULY 1992 ***************************
1451     C*********************************************************************
1452     C*********************************************************************
1453     C*********************************************************************
1454     C************************** Developed By *****************************
1455     C************************** *****************************
1456     C************************ Shrinivas Moorthi **************************
1457     C************************ and **************************
1458     C************************ Max J. Suarez *****************************
1459     C************************ *****************************
1460     C******************** Laboratory for Atmospheres *********************
1461     C****************** NASA/GSFC, Greenbelt, MD 20771 *******************
1462     C*********************************************************************
1463     C*********************************************************************
1464     C
1465     C The calculations of Moorthi and Suarez (1992, MWR) are
1466     C contained in the CLOUD routine.
1467     C It is probably advisable, at least initially, to treat CLOUD
1468     C as a black box that computes the single cloud adjustments. RAS,
1469     C on the other hand, can be tailored to each GCMs configuration
1470     C (ie, number and placement of levels, nature of boundary layer,
1471     C time step and frequency with which RAS is called).
1472     C
1473     C
1474     C Input:
1475     C ------
1476     C
1477 molod 1.16 C lng : The inner dimension of update and input arrays.
1478 molod 1.1 C
1479     C LENC : The run: the number of soundings processes in a single call.
1480 molod 1.16 C RAS works on the first LENC of the lng soundings
1481 molod 1.1 C passed. This allows working on pieces of the world
1482     C say for multitasking, without declaring temporary arrays
1483     C and copying the data to and from them. This is an f77
1484     C version. An F90 version would have to allow more
1485     C flexibility in the argument declarations. Obviously
1486 molod 1.16 C (LENC<=lng).
1487 molod 1.1 C
1488     C K : Number of vertical layers (increasing downwards).
1489     C Need not be the same as the number of layers in the
1490     C GCM, since it is the outer dimension. The bottom layer
1491     C (K) is the subcloud layer.
1492     C
1493     C IC : Detrainment level to check for presence of convection
1494     C
1495     C RASALF : Relaxation parameter (< 1.) for present cloud-type
1496     C
1497     C SETRAS : Logical parameter to control re-calculation of
1498     C saturation specific humidity and mid level P**kappa
1499     C
1500     C FRAC : Fraction of the PBL (layer K) mass allowed to be used
1501     C by a cloud-type in time DT
1502     C
1503     C CP : Specific heat at constant pressure
1504     C
1505     C ALHL : Latent Heat of condensation
1506     C
1507     C RKAP : R/Cp, where R is the gas constant
1508     C
1509     C GRAV : Acceleration due to gravity
1510     C
1511     C P00 : A reference pressure in hPa, useually 1000 hPa
1512     C
1513     C CRTMSF : Critical value of mass flux above which cloudiness at
1514     C the detrainment layer of that cloud-type is assumed.
1515     C Affects only cloudiness calculation.
1516     C
1517 molod 1.16 C POI : 2D array of dimension (lng,K) containing potential
1518 molod 1.1 C temperature. Updated but not initialized by RAS.
1519     C
1520 molod 1.16 C QOI : 2D array of dimension (lng,K) containing specific
1521 molod 1.1 C humidity. Updated but not initialized by RAS.
1522     C
1523 molod 1.16 C UOI : 3D array of dimension (lng,K,NTRACER) containing tracers
1524 molod 1.1 C Updated but not initialized by RAS.
1525     C
1526 molod 1.16 C PRS : 2D array of dimension (lng,K+1) containing pressure
1527 molod 1.1 C in hPa at the interfaces of K-layers from top of the
1528     C atmosphere to the bottom. Not modified.
1529     C
1530 molod 1.16 C PRJ : 2D array of dimension (lng,K+1) containing (PRS/P00) **
1531 molod 1.1 C RKAP. i.e. Exner function at layer edges. Not modified.
1532     C
1533 molod 1.16 C rhfrac : 1D array of dimension (lng) containing a rel.hum. scaling
1534 molod 1.1 C fraction. Not modified.
1535     C
1536     C Output:
1537     C -------
1538     C
1539 molod 1.16 C PCU : 1D array of length lng containing accumulated
1540 molod 1.1 C precipitation in mm/sec.
1541     C
1542 molod 1.16 C CLN : 2D array of dimension (lng,K) containing cloudiness
1543 molod 1.1 C Note: CLN is bumped but NOT initialized
1544     C
1545 molod 1.16 C TCU : 2D array of dimension (lng,K) containing accumulated
1546 molod 1.1 C convective heating (K/sec).
1547     C
1548 molod 1.16 C QCU : 2D array of dimension (lng,K) containing accumulated
1549 molod 1.1 C convective drying (kg/kg/sec).
1550     C
1551 molod 1.16 C CMASS : 2D array of dimension (lng,K) containing the
1552 molod 1.1 C cloud mass flux (kg/sec). Filled from cloud top
1553     C to base.
1554     C
1555     C Temporaries:
1556     C
1557     C ALF, BET, GAM, ETA, PRH, PRI, HOI, HST, QOL, GMH are temporary
1558     C 2D real arrays of dimension of at least (LENC,K) where LENC is
1559     C the horizontal dimension over which convection is invoked.
1560     C
1561     C
1562     C TX1, TX2, TX3, TX4, TX5, TX6, TX7, TX8, TX9, AKM, QS1, CLF, UHT
1563     C VHT, WLQ WFN are temporary real arrays of length at least LENC
1564     C
1565     C IA, I1, and I2 are temporary integer arrays of length LENC
1566     C
1567     C
1568     C************************************************************************
1569 molod 1.9 implicit none
1570     C Argument List declarations
1571 molod 1.21 integer nn,lng,LENC,K,NLTOP,nlayr,ic,ntracedim, ntracer
1572 molod 1.13 _RL rasalf
1573 molod 1.9 LOGICAL SETRAS
1574 molod 1.13 _RL frac, cp, alhl, rkap, grav, p00, crtmsf
1575 molod 1.16 _RL POI(lng,K),QOI(lng,K),PRS(lng,K+1),PRJ(lng,K+1)
1576 molod 1.21 _RL uoi(lng,nlayr,ntracedim)
1577 molod 1.16 _RL PCU(LENC), CLN(lng)
1578 molod 1.23 _RL TCU(lng,K),QCU(lng,K),ucu(lng,k,ntracedim),CMASS(lng,K)
1579 molod 1.16 _RL ALF(lng,K), BET(lng,K), GAM(lng,K), PRH(lng,K), PRI(lng,K)
1580 molod 1.13 _RL HOL(LENC,K), ETA(LENC,K), HST(LENC,K), QOL(LENC,K)
1581     _RL GMH(LENC,K)
1582     _RL TX1(LENC), TX2(LENC), TX3(LENC), TX4(LENC)
1583     _RL TX5(LENC), TX6(LENC), TX7(LENC), TX8(LENC)
1584     _RL ALM(LENC), WFN(LENC), AKM(LENC), QS1(LENC)
1585     _RL WLQ(LENC), CLF(LENC)
1586 molod 1.21 _RL uht(lng,ntracedim)
1587 molod 1.9 integer IA(LENC), I1(LENC),I2(LENC)
1588 molod 1.16 _RL rhfrac(lng)
1589 molod 1.1
1590 molod 1.9 C Local Variables
1591 molod 1.13 _RL daylen,half,one,zero,cmb2pa,rhmax
1592 molod 1.1 PARAMETER (DAYLEN=86400.0, HALF=0.5, ONE=1.0, ZERO=0.0)
1593     PARAMETER (CMB2PA=100.0)
1594     PARAMETER (RHMAX=0.9999)
1595 molod 1.13 _RL rkapp1,onebcp,albcp,onebg,cpbg,twobal
1596 molod 1.1 C
1597 molod 1.9 integer nt,km1,ic1,i,L,len1,len2,isav,len11,ii
1598 molod 1.16 integer lena,lena1,lenb
1599     _RL tem,tem1
1600 molod 1.1
1601     c Explicit Inline Directives
1602     c --------------------------
1603 molod 1.10 #ifdef CRAY
1604     #ifdef f77
1605 molod 1.1 cfpp$ expand (qsat)
1606     #endif
1607     #endif
1608    
1609     RKAPP1 = 1.0 + RKAP
1610     ONEBCP = 1.0 / CP
1611     ALBCP = ALHL * ONEBCP
1612     ONEBG = 1.0 / GRAV
1613     CPBG = CP * ONEBG
1614     TWOBAL = 2.0 / ALHL
1615 molod 1.21
1616 molod 1.1 C
1617     KM1 = K - 1
1618     IC1 = IC + 1
1619     C
1620 molod 1.9 C SETTING ALF, BET, GAM, PRH, AND PRI : DONE ONLY WHEN SETRAS=.T.
1621 molod 1.1 C
1622    
1623     IF (SETRAS) THEN
1624    
1625     DO 2050 L=1,K
1626     DO 2030 I=1,LENC
1627     PRH(I,L) = (PRJ(I,L+1)*PRS(I,L+1) - PRJ(I,L)*PRS(I,L))
1628     * / ((PRS(I,L+1)-PRS(I,L)) * RKAPP1)
1629     2030 CONTINUE
1630     2050 CONTINUE
1631    
1632     DO 2070 L=1,K
1633     DO 2060 I=1,LENC
1634     TX5(I) = POI(I,L) * PRH(I,L)
1635     TX1(I) = (PRS(I,L) + PRS(I,L+1)) * 0.5
1636     TX3(I) = TX5(I)
1637     CALL QSAT(TX3(I), TX1(I), TX2(I), TX4(I), .TRUE.)
1638     ALF(I,L) = TX2(I) - TX4(I) * TX5(I)
1639     BET(I,L) = TX4(I) * PRH(I,L)
1640     GAM(I,L) = 1.0 / ((1.0 + TX4(I)*ALBCP) * PRH(I,L))
1641     PRI(I,L) = (CP/CMB2PA) / (PRS(I,L+1) - PRS(I,L))
1642     2060 CONTINUE
1643     2070 CONTINUE
1644    
1645     ENDIF
1646     C
1647     C
1648     DO 10 L=1,K
1649 molod 1.16 DO 10 I=1,lng
1650 molod 1.1 TCU(I,L) = 0.0
1651     QCU(I,L) = 0.0
1652     CMASS(I,L) = 0.0
1653     10 CONTINUE
1654    
1655 molod 1.21 do nt = 1,ntracer
1656     do L=1,K
1657     do I=1,LENC
1658     ucu(I,L,nt) = 0.0
1659     enddo
1660     enddo
1661     enddo
1662 molod 1.1 C
1663     DO 30 I=1,LENC
1664     TX1(I) = PRJ(I,K+1) * POI(I,K)
1665     QS1(I) = ALF(I,K) + BET(I,K)*POI(I,K)
1666     QOL(I,K) = MIN(QS1(I)*RHMAX,QOI(I,K))
1667    
1668     HOL(I,K) = TX1(I)*CP + QOL(I,K)*ALHL
1669     ETA(I,K) = ZERO
1670     TX2(I) = (PRJ(I,K+1) - PRJ(I,K)) * POI(I,K) * CP
1671     30 CONTINUE
1672     C
1673     IF (IC .LT. KM1) THEN
1674     DO 3703 L=KM1,IC1,-1
1675     DO 50 I=1,LENC
1676     QS1(I) = ALF(I,L) + BET(I,L)*POI(I,L)
1677     QOL(I,L) = MIN(QS1(I)*RHMAX,QOI(I,L))
1678     C
1679     TEM1 = TX2(I) + PRJ(I,L+1) * POI(I,L) * CP
1680     HOL(I,L) = TEM1 + QOL(I,L )* ALHL
1681     HST(I,L) = TEM1 + QS1(I) * ALHL
1682    
1683     TX1(I) = (PRJ(I,L+1) - PRJ(I,L)) * POI(I,L)
1684     ETA(I,L) = ETA(I,L+1) + TX1(I)*CPBG
1685     TX2(I) = TX2(I) + TX1(I)*CP
1686     50 CONTINUE
1687     C
1688     3703 CONTINUE
1689     ENDIF
1690    
1691    
1692     DO 70 I=1,LENC
1693     HOL(I,IC) = TX2(I)
1694     QS1(I) = ALF(I,IC) + BET(I,IC)*POI(I,IC)
1695     QOL(I,IC) = MIN(QS1(I)*RHMAX,QOI(I,IC))
1696     c
1697     TEM1 = TX2(I) + PRJ(I,IC1) * POI(I,IC) * CP
1698     HOL(I,IC) = TEM1 + QOL(I,IC) * ALHL
1699     HST(I,IC) = TEM1 + QS1(I) * ALHL
1700     C
1701     TX3(I ) = (PRJ(I,IC1) - PRH(I,IC)) * POI(I,IC)
1702     ETA(I,IC) = ETA(I,IC1) + CPBG * TX3(I)
1703     70 CONTINUE
1704     C
1705     DO 130 I=1,LENC
1706     TX2(I) = HOL(I,K) - HST(I,IC)
1707     TX1(I) = ZERO
1708    
1709     130 CONTINUE
1710     C
1711     C ENTRAINMENT PARAMETER
1712     C
1713     DO 160 L=IC,KM1
1714     DO 160 I=1,LENC
1715     TX1(I) = TX1(I) + (HST(I,IC) - HOL(I,L)) * (ETA(I,L) - ETA(I,L+1))
1716     160 CONTINUE
1717     C
1718     LEN1 = 0
1719     LEN2 = 0
1720     ISAV = 0
1721     DO 195 I=1,LENC
1722     IF (TX1(I) .GT. ZERO .AND. TX2(I) .GT. ZERO
1723     . .AND. rhfrac(i).ne.0.0 ) THEN
1724     LEN1 = LEN1 + 1
1725     IA(LEN1) = I
1726     ALM(LEN1) = TX2(I) / TX1(I)
1727     ENDIF
1728     195 CONTINUE
1729     C
1730     LEN2 = LEN1
1731     if (IC1 .lt. K) then
1732     DO 196 I=1,LENC
1733     IF (TX2(I) .LE. 0.0 .AND. (HOL(I,K) .GT. HST(I,IC1))
1734     . .AND. rhfrac(i).ne.0.0 ) THEN
1735     LEN2 = LEN2 + 1
1736     IA(LEN2) = I
1737     ALM(LEN2) = 0.0
1738     ENDIF
1739     196 CONTINUE
1740     endif
1741     C
1742     IF (LEN2 .EQ. 0) THEN
1743     DO 5010 I=1,LENC*K
1744     HST(I,1) = 0.0
1745     QOL(I,1) = 0.0
1746     5010 CONTINUE
1747     DO 5020 I=1,LENC
1748     PCU(I) = 0.0
1749     5020 CONTINUE
1750     RETURN
1751     ENDIF
1752     LEN11 = LEN1 + 1
1753     C
1754     C NORMALIZED MASSFLUX
1755     C
1756     DO 250 I=1,LEN2
1757     ETA(I,K) = 1.0
1758     II = IA(I)
1759     TX2(I) = 0.5 * (PRS(II,IC) + PRS(II,IC1))
1760     TX4(I) = PRS(II,K)
1761     250 CONTINUE
1762     C
1763     DO 252 I=LEN11,LEN2
1764     WFN(I) = 0.0
1765     II = IA(I)
1766     IF (HST(II,IC1) .LT. HST(II,IC)) THEN
1767     TX6(I) = (HST(II,IC1)-HOL(II,K))/(HST(II,IC1)-HST(II,IC))
1768     ELSE
1769     TX6(I) = 0.0
1770     ENDIF
1771     TX2(I) = 0.5 * (PRS(II,IC1)+PRS(II,IC1+1)) * (1.0-TX6(I))
1772     * + TX2(I) * TX6(I)
1773     252 CONTINUE
1774     C
1775     CALL ACRITN(LEN2, TX2, TX4, TX3)
1776     C
1777     DO 260 L=KM1,IC,-1
1778     DO 255 I=1,LEN2
1779     TX1(I) = ETA(IA(I),L)
1780     255 CONTINUE
1781     DO 260 I=1,LEN2
1782     ETA(I,L) = 1.0 + ALM(I) * TX1(I)
1783     260 CONTINUE
1784     C
1785     C CLOUD WORKFUNCTION
1786     C
1787     IF (LEN1 .GT. 0) THEN
1788     DO 270 I=1,LEN1
1789     II = IA(I)
1790     WFN(I) = - GAM(II,IC) * (PRJ(II,IC1) - PRH(II,IC))
1791     * * HST(II,IC) * ETA(I,IC1)
1792     270 CONTINUE
1793     ENDIF
1794     C
1795     DO 290 I=1,LEN2
1796     II = IA(I)
1797     TX1(I) = HOL(II,K)
1798     290 CONTINUE
1799     C
1800     IF (IC1 .LE. KM1) THEN
1801    
1802     DO 380 L=KM1,IC1,-1
1803     DO 380 I=1,LEN2
1804     II = IA(I)
1805     TEM = TX1(I) + (ETA(I,L) - ETA(I,L+1)) * HOL(II,L)
1806     C
1807     PCU(I) = PRJ(II,L+1) - PRH(II,L)
1808     TEM1 = ETA(I,L+1) * PCU(I)
1809     TX1(I) = TX1(I)*PCU(I)
1810     C
1811     PCU(I) = PRH(II,L) - PRJ(II,L)
1812     TEM1 = (TEM1 + ETA(I,L) * PCU(I)) * HST(II,L)
1813     TX1(I) = TX1(I) + TEM*PCU(I)
1814     C
1815     WFN(I) = WFN(I) + (TX1(I) - TEM1) * GAM(II,L)
1816     TX1(I) = TEM
1817     380 CONTINUE
1818     ENDIF
1819     C
1820     LENA = 0
1821     IF (LEN1 .GT. 0) THEN
1822     DO 512 I=1,LEN1
1823     II = IA(I)
1824     WFN(I) = WFN(I) + TX1(I) * GAM(II,IC)*(PRJ(II,IC1)-PRH(II,IC))
1825     * - TX3(I)
1826     IF (WFN(I) .GT. 0.0) THEN
1827     LENA = LENA + 1
1828     I1(LENA) = IA(I)
1829     I2(LENA) = I
1830     TX1(LENA) = WFN(I)
1831     TX2(LENA) = QS1(IA(I))
1832     TX6(LENA) = 1.0
1833     ENDIF
1834     512 CONTINUE
1835     ENDIF
1836     LENB = LENA
1837     DO 515 I=LEN11,LEN2
1838     WFN(I) = WFN(I) - TX3(I)
1839     IF (WFN(I) .GT. 0.0 .AND. TX6(I) .GT. 0.0) THEN
1840     LENB = LENB + 1
1841     I1(LENB) = IA(I)
1842     I2(LENB) = I
1843     TX1(LENB) = WFN(I)
1844     TX2(LENB) = QS1(IA(I))
1845     TX4(LENB) = TX6(I)
1846     ENDIF
1847     515 CONTINUE
1848     C
1849     IF (LENB .LE. 0) THEN
1850     DO 5030 I=1,LENC*K
1851     HST(I,1) = 0.0
1852     QOL(I,1) = 0.0
1853     5030 CONTINUE
1854     DO 5040 I=1,LENC
1855     PCU(I) = 0.0
1856     5040 CONTINUE
1857     RETURN
1858     ENDIF
1859    
1860     C
1861     DO 516 I=1,LENB
1862     WFN(I) = TX1(I)
1863     QS1(I) = TX2(I)
1864     516 CONTINUE
1865     C
1866     DO 520 L=IC,K
1867     DO 517 I=1,LENB
1868     TX1(I) = ETA(I2(I),L)
1869     517 CONTINUE
1870     DO 520 I=1,LENB
1871     ETA(I,L) = TX1(I)
1872     520 CONTINUE
1873     C
1874     LENA1 = LENA + 1
1875     C
1876     DO 510 I=1,LENA
1877     II = I1(I)
1878     TX8(I) = HST(II,IC) - HOL(II,IC)
1879     510 CONTINUE
1880     DO 530 I=LENA1,LENB
1881     II = I1(I)
1882     TX6(I) = TX4(I)
1883     TEM = TX6(I) * (HOL(II,IC)-HOL(II,IC1)) + HOL(II,IC1)
1884     TX8(I) = HOL(II,K) - TEM
1885    
1886     TEM1 = TX6(I) * (QOL(II,IC)-QOL(II,IC1)) + QOL(II,IC1)
1887     TX5(I) = TEM - TEM1 * ALHL
1888     QS1(I) = TEM1 + TX8(I)*(ONE/ALHL)
1889     TX3(I) = HOL(II,IC)
1890     530 CONTINUE
1891     C
1892     C
1893     DO 620 I=1,LENB
1894     II = I1(I)
1895     WLQ(I) = QOL(II,K) - QS1(I) * ETA(I,IC)
1896     TX7(I) = HOL(II,K)
1897     620 CONTINUE
1898 molod 1.21 DO NT=1,Ntracer
1899     DO 621 I=1,LENB
1900     II = I1(I)
1901     UHT(I,NT) = UOI(II,K+nltop-1,NT)-UOI(II,IC+nltop-1,NT) * ETA(I,IC)
1902     621 CONTINUE
1903     ENDDO
1904 molod 1.1 C
1905     DO 635 L=KM1,IC,-1
1906     DO 630 I=1,LENB
1907     II = I1(I)
1908     TEM = ETA(I,L) - ETA(I,L+1)
1909     WLQ(I) = WLQ(I) + TEM * QOL(II,L)
1910     630 CONTINUE
1911     635 CONTINUE
1912 molod 1.21 DO NT=1,Ntracer
1913     DO L=KM1,IC,-1
1914     DO I=1,LENB
1915     II = I1(I)
1916     TEM = ETA(I,L) - ETA(I,L+1)
1917     UHT(I,NT) = UHT(I,NT) + TEM * UOI(II,L+nltop-1,NT)
1918     ENDDO
1919     ENDDO
1920     ENDDO
1921 molod 1.1 C
1922     C CALCULATE GS AND PART OF AKM (THAT REQUIRES ETA)
1923     C
1924     DO 690 I=1,LENB
1925     II = I1(I)
1926     c TX7(I) = HOL(II,K)
1927     TEM = (POI(II,KM1) - POI(II,K)) / (PRH(II,K) - PRH(II,KM1))
1928     HOL(I,K) = TEM * (PRJ(II,K)-PRH(II,KM1))*PRH(II,K)*PRI(II,K)
1929     HOL(I,KM1) = TEM * (PRH(II,K)-PRJ(II,K))*PRH(II,KM1)*PRI(II,KM1)
1930     AKM(I) = ZERO
1931     TX2(I) = 0.5 * (PRS(II,IC) + PRS(II,IC1))
1932     690 CONTINUE
1933    
1934     IF (IC1 .LE. KM1) THEN
1935     DO 750 L=KM1,IC1,-1
1936     DO 750 I=1,LENB
1937     II = I1(I)
1938     TEM = (POI(II,L-1) - POI(II,L)) * ETA(I,L)
1939     * / (PRH(II,L) - PRH(II,L-1))
1940     C
1941     HOL(I,L) = TEM * (PRJ(II,L)-PRH(II,L-1)) * PRH(II,L)
1942     * * PRI(II,L) + HOL(I,L)
1943     HOL(I,L-1) = TEM * (PRH(II,L)-PRJ(II,L)) * PRH(II,L-1)
1944     * * PRI(II,L-1)
1945     C
1946     AKM(I) = AKM(I) - HOL(I,L)
1947     * * (ETA(I,L) * (PRH(II,L)-PRJ(II,L)) +
1948     * ETA(I,L+1) * (PRJ(II,L+1)-PRH(II,L))) / PRH(II,L)
1949     750 CONTINUE
1950     ENDIF
1951     C
1952     C
1953     CALL RNCL(LENB, TX2, TX1, CLF)
1954    
1955     DO 770 I=1,LENB
1956     TX2(I) = (ONE - TX1(I)) * WLQ(I)
1957     WLQ(I) = TX1(I) * WLQ(I)
1958     C
1959     TX1(I) = HOL(I,IC)
1960     770 CONTINUE
1961     DO 790 I=LENA1, LENB
1962     II = I1(I)
1963     TX1(I) = TX1(I) + (TX5(I)-TX3(I)+QOL(II,IC)*ALHL)*(PRI(II,IC)/CP)
1964     790 CONTINUE
1965    
1966     DO 800 I=1,LENB
1967     HOL(I,IC) = TX1(I) - TX2(I) * ALBCP * PRI(I1(I),IC)
1968     800 CONTINUE
1969    
1970     IF (LENA .GT. 0) THEN
1971     DO 810 I=1,LENA
1972     II = I1(I)
1973     AKM(I) = AKM(I) - ETA(I,IC1) * (PRJ(II,IC1) - PRH(II,IC))
1974     * * TX1(I) / PRH(II,IC)
1975     810 CONTINUE
1976     ENDIF
1977     c
1978     C CALCULATE GH
1979     C
1980     DO 830 I=1,LENB
1981     II = I1(I)
1982     TX3(I) = QOL(II,KM1) - QOL(II,K)
1983     GMH(I,K) = HOL(I,K) + TX3(I) * PRI(II,K) * (ALBCP)
1984    
1985     AKM(I) = AKM(I) + GAM(II,KM1)*(PRJ(II,K)-PRH(II,KM1))
1986     * * GMH(I,K)
1987     TX3(I) = zero
1988     830 CONTINUE
1989     C
1990     IF (IC1 .LE. KM1) THEN
1991     DO 840 L=KM1,IC1,-1
1992     DO 840 I=1,LENB
1993     II = I1(I)
1994     TX2(I) = TX3(I)
1995     TX3(I) = (QOL(II,L-1) - QOL(II,L)) * ETA(I,L)
1996     TX2(I) = TX2(I) + TX3(I)
1997     C
1998     GMH(I,L) = HOL(I,L) + TX2(I) * PRI(II,L) * (ALBCP*HALF)
1999     840 CONTINUE
2000     C
2001     C
2002     ENDIF
2003     DO 850 I=LENA1,LENB
2004     TX3(I) = TX3(I) + TWOBAL
2005     * * (TX7(I) - TX8(I) - TX5(I) - QOL(I1(I),IC)*ALHL)
2006     850 CONTINUE
2007     DO 860 I=1,LENB
2008     GMH(I,IC) = TX1(I) + PRI(I1(I),IC) * ONEBCP
2009     * * (TX3(I)*(ALHL*HALF) + ETA(I,IC) * TX8(I))
2010     860 CONTINUE
2011     C
2012     C CALCULATE HC PART OF AKM
2013     C
2014     IF (IC1 .LE. KM1) THEN
2015     DO 870 I=1,LENB
2016     TX1(I) = GMH(I,K)
2017     870 CONTINUE
2018     DO 3725 L=KM1,IC1,-1
2019     DO 880 I=1,LENB
2020     II = I1(I)
2021     TX1(I) = TX1(I) + (ETA(I,L) - ETA(I,L+1)) * GMH(I,L)
2022     TX2(I) = GAM(II,L-1) * (PRJ(II,L) - PRH(II,L-1))
2023     880 CONTINUE
2024     C
2025     IF (L .EQ. IC1) THEN
2026     DO 890 I=LENA1,LENB
2027     TX2(I) = ZERO
2028     890 CONTINUE
2029     ENDIF
2030     DO 900 I=1,LENB
2031     II = I1(I)
2032     AKM(I) = AKM(I) + TX1(I) *
2033     * (TX2(I) + GAM(II,L)*(PRH(II,L)-PRJ(II,L)))
2034     900 CONTINUE
2035     3725 CONTINUE
2036     ENDIF
2037     C
2038     DO 920 I=LENA1,LENB
2039     II = I1(I)
2040     TX2(I) = 0.5 * (PRS(II,IC) + PRS(II,IC1))
2041     * + 0.5*(PRS(II,IC+2) - PRS(II,IC)) * (ONE-TX6(I))
2042     c
2043     TX1(I) = PRS(II,IC1)
2044     TX5(I) = 0.5 * (PRS(II,IC1) + PRS(II,IC+2))
2045     C
2046     IF ((TX2(I) .GE. TX1(I)) .AND. (TX2(I) .LT. TX5(I))) THEN
2047     TX6(I) = ONE - (TX2(I) - TX1(I)) / (TX5(I) - TX1(I))
2048     C
2049     TEM = PRI(II,IC1) / PRI(II,IC)
2050     HOL(I,IC1) = HOL(I,IC1) + HOL(I,IC) * TEM
2051     HOL(I,IC) = ZERO
2052     C
2053     GMH(I,IC1) = GMH(I,IC1) + GMH(I,IC) * TEM
2054     GMH(I,IC) = ZERO
2055     ELSEIF (TX2(I) .LT. TX1(I)) THEN
2056     TX6(I) = 1.0
2057     ELSE
2058     TX6(I) = 0.0
2059     ENDIF
2060     920 CONTINUE
2061     C
2062     C
2063     DO I=1,LENC
2064     PCU(I) = 0.0
2065     ENDDO
2066    
2067     DO 970 I=1,LENB
2068     II = I1(I)
2069     IF (AKM(I) .LT. ZERO .AND. WLQ(I) .GE. 0.0) THEN
2070     WFN(I) = - TX6(I) * WFN(I) * RASALF / AKM(I)
2071     ELSE
2072     WFN(I) = ZERO
2073     ENDIF
2074     TEM = (PRS(II,K+1)-PRS(II,K))*(CMB2PA*FRAC)
2075     WFN(I) = MIN(WFN(I), TEM)
2076     C
2077     C compute cloud amount
2078     C
2079     CC TX1(I) = CLN(II)
2080     CC IF (WFN(I) .GT. CRTMSF) TX1(I) = TX1(I) + CLF(I)
2081     CC IF (TX1(I) .GT. ONE) TX1(I) = ONE
2082     C
2083     C PRECIPITATION
2084     C
2085     PCU(II) = WLQ(I) * WFN(I) * ONEBG
2086     C
2087     C CUMULUS FRICTION AT THE BOTTOM LAYER
2088     C
2089     TX4(I) = WFN(I) * (1.0/ALHL)
2090     TX5(I) = WFN(I) * ONEBCP
2091     970 CONTINUE
2092     C
2093     C compute cloud mass flux for diagnostic output
2094     C
2095     DO L = IC,K
2096     DO I=1,LENB
2097     II = I1(I)
2098     if(L.lt.K)then
2099     CMASS(II,L) = ETA(I,L+1) * WFN(I) * ONEBG
2100     else
2101     CMASS(II,L) = WFN(I) * ONEBG
2102     endif
2103     ENDDO
2104     ENDDO
2105     C
2106     CC DO 975 I=1,LENB
2107     CC II = I1(I)
2108     CC CLN(II) = TX1(I)
2109     CC975 CONTINUE
2110     C
2111     C THETA AND Q CHANGE DUE TO CLOUD TYPE IC
2112     C
2113    
2114     c TEMA = 0.0
2115     c TEMB = 0.0
2116     DO 990 L=IC,K
2117     DO 980 I=1,LENB
2118     II = I1(I)
2119     TEM = (GMH(I,L) - HOL(I,L)) * TX4(I)
2120     TEM1 = HOL(I,L) * TX5(I)
2121     C
2122     TCU(II,L) = TEM1 / PRH(II,L)
2123     QCU(II,L) = TEM
2124     980 CONTINUE
2125    
2126     c I = I1(IP1)
2127     c
2128     c TEM = (PRS(I,L+1)-PRS(I,L)) * (ONEBG*100.0)
2129     c TEMA = TEMA + TCU(I,L) * PRH(I,L) * TEM * (CP/ALHL)
2130     c TEMB = TEMB + QCU(I,L) * TEM
2131     C
2132     990 CONTINUE
2133     C
2134     c Compute Tracer Tendencies
2135     c -------------------------
2136 molod 1.21 do nt = 1,ntracer
2137 molod 1.18 c
2138 molod 1.1 c Tracer Tendency at the Bottom Layer
2139     c -----------------------------------
2140 molod 1.21 DO 995 I=1,LENB
2141     II = I1(I)
2142     TEM = half*TX5(I) * PRI(II,K)
2143     TX1(I) = ( UOI(II,KM1+nltop-1,nt) - UOI(II,K+nltop-1,nt))
2144     ucu(II,K,nt) = TEM * TX1(I)
2145     995 CONTINUE
2146 molod 1.18 c
2147 molod 1.1 c Tracer Tendency at all other Levels
2148     c -----------------------------------
2149 molod 1.21 DO 1020 L=KM1,IC1,-1
2150     DO 1010 I=1,LENB
2151     II = I1(I)
2152     TEM = half*TX5(I) * PRI(II,L)
2153     TEM1 = TX1(I)
2154     TX1(I) = (UOI(II,L-1+nltop-1,nt)-UOI(II,L+nltop-1,nt)) * ETA(I,L)
2155     TX3(I) = (TX1(I) + TEM1) * TEM
2156     1010 CONTINUE
2157     DO 1020 I=1,LENB
2158     II = I1(I)
2159     ucu(II,L,nt) = TX3(I)
2160     1020 CONTINUE
2161 molod 1.22
2162 molod 1.21 DO 1030 I=1,LENB
2163     II = I1(I)
2164     IF (TX6(I) .GE. 1.0) THEN
2165     TEM = half*TX5(I) * PRI(II,IC)
2166     ELSE
2167     TEM = 0.0
2168     ENDIF
2169     TX1(I) = (TX1(I) + UHT(I,nt) + UHT(I,nt)) * TEM
2170     1030 CONTINUE
2171     DO 1040 I=1,LENB
2172     II = I1(I)
2173     ucu(II,IC,nt) = TX1(I)
2174     1040 CONTINUE
2175    
2176     enddo
2177 molod 1.1 C
2178     C PENETRATIVE CONVECTION CALCULATION OVER
2179     C
2180    
2181     RETURN
2182     END
2183 molod 1.16 SUBROUTINE RNCL(lng, PL, RNO, CLF)
2184 molod 1.1 C
2185     C*********************************************************************
2186     C********************** Relaxed Arakawa-Schubert *********************
2187     C************************ SUBROUTINE RNCL ************************
2188     C**************************** 23 July 1992 ***************************
2189     C*********************************************************************
2190 molod 1.9 implicit none
2191     C Argument List declarations
2192 molod 1.16 integer lng
2193     _RL PL(lng), RNO(lng), CLF(lng)
2194 molod 1.1
2195 molod 1.9 C Local Variables
2196 molod 1.13 _RL p5,p8,pt8,pt2,pfac,p4,p6,p7,p9,cucld,cfac
2197 molod 1.1 PARAMETER (P5=500.0, P8=800.0, PT8=0.8, PT2=0.2)
2198     PARAMETER (PFAC=PT2/(P8-P5))
2199     PARAMETER (P4=400.0, P6=401.0)
2200     PARAMETER (P7=700.0, P9=900.0)
2201     PARAMETER (CUCLD=0.5,CFAC=CUCLD/(P6-P4))
2202 molod 1.9
2203     integer i
2204 molod 1.1 C
2205 molod 1.16 DO 10 I=1,lng
2206 molod 1.1 rno(i) = 1.0
2207 ce107 1.34 ccc if( pl(i).le.400.0 ) rno(i) = max( 0.75 _d 0, 1.0-0.0025*(400.0-pl(i)) )
2208 molod 1.1
2209     ccc IF ( PL(I).GE.P7 .AND. PL(I).LE.P9 ) THEN
2210     ccc RNO(I) = ((P9-PL(I))/(P9-P7)) **2
2211     ccc ELSE IF (PL(I).GT.P9) THEN
2212     ccc RNO(I) = 0.
2213     ccc ENDIF
2214    
2215     CLF(I) = CUCLD
2216     C
2217     CARIESIF (PL(I) .GE. P5 .AND. PL(I) .LE. P8) THEN
2218     CARIES RNO(I) = (P8-PL(I))*PFAC + PT8
2219     CARIESELSEIF (PL(I) .GT. P8 ) THEN
2220     CARIES RNO(I) = PT8
2221     CARIESENDIF
2222     CARIES
2223     IF (PL(I) .GE. P4 .AND. PL(I) .LE. P6) THEN
2224     CLF(I) = (P6-PL(I))*CFAC
2225     ELSEIF (PL(I) .GT. P6 ) THEN
2226     CLF(I) = 0.0
2227     ENDIF
2228     10 CONTINUE
2229     C
2230     RETURN
2231     END
2232 molod 1.16 SUBROUTINE ACRITN ( lng,PL,PLB,ACR )
2233 molod 1.1
2234     C*********************************************************************
2235     C********************** Relaxed Arakawa-Schubert *********************
2236     C************************** SUBROUTINE ACRIT *********************
2237     C****************** modified August 28, 1996 L.Takacs ************
2238     C**** *****
2239     C**** Note: Data obtained from January Mean After-Analysis *****
2240     C**** from 4x5 46-layer GEOS Assimilation *****
2241     C**** *****
2242     C*********************************************************************
2243 molod 1.9 implicit none
2244     C Argument List declarations
2245 molod 1.16 integer lng
2246     _RL PL(lng), PLB(lng), ACR(lng)
2247 molod 1.1
2248 molod 1.9 C Local variables
2249     integer lma
2250 molod 1.1 parameter (lma=18)
2251 molod 1.13 _RL p(lma)
2252     _RL a(lma)
2253 molod 1.9 integer i,L
2254 molod 1.13 _RL temp
2255 molod 1.1
2256     data p / 93.81, 111.65, 133.46, 157.80, 186.51,
2257     . 219.88, 257.40, 301.21, 352.49, 409.76,
2258     . 471.59, 535.04, 603.33, 672.79, 741.12,
2259     . 812.52, 875.31, 930.20/
2260    
2261     data a / 3.35848, 3.13645, 2.48072, 2.08277, 1.53364,
2262     . 1.01971, .65846, .45867, .38687, .31002,
2263     . .25574, .20347, .17254, .15260, .16756,
2264     . .09916, .10360, .05880/
2265    
2266    
2267     do L=1,lma-1
2268 molod 1.16 do i=1,lng
2269 molod 1.1 if( pl(i).ge.p(L) .and.
2270     . pl(i).le.p(L+1)) then
2271     temp = ( pl(i)-p(L) )/( p(L+1)-p(L) )
2272     acr(i) = a(L+1)*temp + a(L)*(1-temp)
2273     endif
2274     enddo
2275     enddo
2276    
2277 molod 1.16 do i=1,lng
2278 molod 1.1 if( pl(i).lt.p(1) ) acr(i) = a(1)
2279     if( pl(i).gt.p(lma) ) acr(i) = a(lma)
2280     enddo
2281    
2282 molod 1.16 do i=1,lng
2283 molod 1.1 acr(i) = acr(i) * (plb(i)-pl(i))
2284     enddo
2285    
2286     RETURN
2287     END
2288 molod 1.6 SUBROUTINE RNEVP(NN,IRUN,NLAY,TL,QL,RAIN,PL,CLFRAC,SP,DP,PLKE,
2289 molod 1.1 1 PLK,TH,TEMP1,TEMP2,TEMP3,ITMP1,ITMP2,RCON,RLAR,CLSBTH,tmscl,
2290     2 tmfrc,cp,gravity,alhl,gamfac,cldlz,RHCRIT,offset,alpha)
2291    
2292 molod 1.9 implicit none
2293     C Argument List declarations
2294     integer nn,irun,nlay
2295 molod 1.13 _RL TL(IRUN,NLAY),QL(IRUN,NLAY),RAIN(IRUN,NLAY),
2296 molod 1.9 . PL(IRUN,NLAY),CLFRAC(IRUN,NLAY),SP(IRUN),TEMP1(IRUN,NLAY),
2297     . TEMP2(IRUN,NLAY),PLKE(IRUN,NLAY+1),
2298     . RCON(IRUN),RLAR(IRUN),DP(IRUN,NLAY),PLK(IRUN,NLAY),TH(IRUN,NLAY),
2299     . TEMP3(IRUN,NLAY)
2300     integer ITMP1(IRUN,NLAY),ITMP2(IRUN,NLAY)
2301 molod 1.13 _RL CLSBTH(IRUN,NLAY)
2302     _RL tmscl,tmfrc,cp,gravity,alhl,gamfac,offset,alpha
2303     _RL cldlz(irun,nlay)
2304     _RL rhcrit(irun,nlay)
2305 molod 1.9 C
2306     C Local Variables
2307 molod 1.13 _RL zm1p04,zero,two89,zp44,zp01,half,zp578,one,thousand,z3600
2308     _RL zp1,zp001
2309 molod 1.1 PARAMETER (ZM1P04 = -1.04E-4 )
2310     PARAMETER (ZERO = 0.)
2311     PARAMETER (TWO89= 2.89E-5)
2312     PARAMETER ( ZP44= 0.44)
2313     PARAMETER ( ZP01= 0.01)
2314     PARAMETER ( ZP1 = 0.1 )
2315     PARAMETER ( ZP001= 0.001)
2316     PARAMETER ( HALF= 0.5)
2317     PARAMETER ( ZP578 = 0.578 )
2318     PARAMETER ( ONE = 1.)
2319     PARAMETER ( THOUSAND = 1000.)
2320     PARAMETER ( Z3600 = 3600.)
2321     C
2322 molod 1.13 _RL EVP9(IRUN,NLAY)
2323     _RL water(irun),crystal(irun)
2324     _RL watevap(irun),iceevap(irun)
2325     _RL fracwat,fracice, tice,rh,fact,dum
2326     _RL rainmax(irun)
2327     _RL getcon,rphf,elocp,cpog,relax
2328     _RL exparg,arearat,rpow
2329 molod 1.9
2330     integer i,L,n,nlaym1,irnlay,irnlm1
2331 molod 1.1
2332     c Explicit Inline Directives
2333     c --------------------------
2334 molod 1.10 #ifdef CRAY
2335     #ifdef f77
2336 molod 1.1 cfpp$ expand (qsat)
2337     #endif
2338     #endif
2339    
2340     tice = getcon('FREEZING-POINT')
2341    
2342     fracwat = 0.70
2343     fracice = 0.01
2344    
2345     NLAYM1 = NLAY - 1
2346     IRNLAY = IRUN*NLAY
2347     IRNLM1 = IRUN*(NLAY-1)
2348    
2349     RPHF = Z3600/tmscl
2350    
2351     ELOCP = alhl/cp
2352     CPOG = cp/gravity
2353    
2354     DO I = 1,IRUN
2355     RLAR(I) = 0.
2356     water(i) = 0.
2357     crystal(i) = 0.
2358     ENDDO
2359    
2360     do L = 1,nlay
2361     do i = 1,irun
2362     EVP9(i,L) = 0.
2363     TEMP1(i,L) = 0.
2364     TEMP2(i,L) = 0.
2365     TEMP3(i,L) = 0.
2366     CLSBTH(i,L) = 0.
2367     cldlz(i,L) = 0.
2368     enddo
2369     enddo
2370    
2371     C RHO(ZERO) / RHO FOR TERMINAL VELOCITY APPROX.
2372     c ---------------------------------------------
2373     DO L = 1,NLAY
2374     DO I = 1,IRUN
2375     TEMP2(I,L) = PL(I,L)*ZP001
2376     TEMP2(I,L) = SQRT(TEMP2(I,L))
2377     ENDDO
2378     ENDDO
2379    
2380     C INVERSE OF MASS IN EACH LAYER
2381     c -----------------------------
2382     DO L = 1,NLAY
2383     DO I = 1,IRUN
2384 molod 1.6 TEMP3(I,L) = GRAVITY*ZP01 / DP(I,L)
2385 molod 1.1 ENDDO
2386     ENDDO
2387    
2388     C DO LOOP FOR MOISTURE EVAPORATION ABILITY AND CONVEC EVAPORATION.
2389     c ----------------------------------------------------------------
2390     DO 100 L=1,NLAY
2391    
2392     DO I = 1,IRUN
2393     TEMP1(I,3) = TL(I,L)
2394     TEMP1(I,4) = QL(I,L)
2395     ENDDO
2396    
2397     DO 50 N=1,2
2398     IF(N.EQ.1)RELAX=HALF
2399     IF(N.GT.1)RELAX=ONE
2400    
2401     DO I = 1,IRUN
2402     call qsat ( temp1(i,3),pl(i,L),temp1(i,2),temp1(i,6),.true. )
2403     TEMP1(I,5)=TEMP1(I,2)-TEMP1(I,4)
2404     TEMP1(I,6)=TEMP1(I,6)*ELOCP
2405     TEMP1(I,5)=TEMP1(I,5)/(ONE+TEMP1(I,6))
2406     TEMP1(I,4)=TEMP1(I,4)+TEMP1(I,5)*RELAX
2407     TEMP1(I,3)=TEMP1(I,3)-TEMP1(I,5)*ELOCP*RELAX
2408     ENDDO
2409     50 CONTINUE
2410    
2411     DO I = 1,IRUN
2412     EVP9(I,L) = (TEMP1(I,4) - QL(I,L))/TEMP3(I,L)
2413     C convective detrained water
2414     cldlz(i,L) = rain(i,L)*temp3(i,L)
2415     if( tl(i,L).gt.tice-20.) then
2416     water(i) = water(i) + rain(i,L)
2417     else
2418     crystal(i) = crystal(i) + rain(i,L)
2419     endif
2420     ENDDO
2421    
2422     C**********************************************************************
2423     C FOR CONVECTIVE PRECIP, FIND THE "EVAPORATION EFFICIENCY" USING *
2424     C KESSLERS PARAMETERIZATION *
2425     C**********************************************************************
2426    
2427     DO 20 I=1,IRUN
2428    
2429     iceevap(i) = 0.
2430     watevap(i) = 0.
2431    
2432     if( (evp9(i,L).gt.0.) .and. (crystal(i).gt.0.) ) then
2433     iceevap(I) = EVP9(I,L)*fracice
2434     IF(iceevap(i).GE.crystal(i)) iceevap(i) = crystal(i)
2435     EVP9(I,L)=EVP9(I,L)-iceevap(I)
2436     crystal(i) = crystal(i) - iceevap(i)
2437     endif
2438    
2439     C and now warm precipitate
2440     if( (evp9(i,L).gt.0.) .and. (water(i).gt.0.) ) then
2441     exparg = ZM1P04*tmscl*((water(i)*RPHF*TEMP2(I,L))**ZP578)
2442     AREARAT = ONE-(EXP(EXPARG))
2443     watevap(I) = EVP9(I,L)*AREARAT*fracwat
2444     IF(watevap(I).GE.water(i)) watevap(I) = water(i)
2445     EVP9(I,L)=EVP9(I,L)-watevap(I)
2446     water(i) = water(i) - watevap(i)
2447     endif
2448    
2449     QL(I,L) = QL(I,L)+(iceevap(i)+watevap(i))*TEMP3(I,L)
2450     TL(I,L) = TL(I,L)-(iceevap(i)+watevap(i))*TEMP3(I,L)*ELOCP
2451    
2452     20 CONTINUE
2453    
2454     100 CONTINUE
2455    
2456     do i = 1,irun
2457     rcon(i) = water(i) + crystal(i)
2458     enddo
2459    
2460     C**********************************************************************
2461     C Large Scale Precip
2462     C**********************************************************************
2463    
2464     DO 200 L=1,NLAY
2465     DO I = 1,IRUN
2466     rainmax(i) = rhcrit(i,L)*evp9(i,L) +
2467     . ql(i,L)*(rhcrit(i,L)-1.)/temp3(i,L)
2468    
2469     if (rainmax(i).LE.0.0) then
2470     call qsat( tl(i,L),pl(i,L),rh,dum,.false.)
2471     rh = ql(i,L)/rh
2472    
2473     if( rhcrit(i,L).eq.1.0 ) then
2474     fact = 1.0
2475     else
2476 ce107 1.34 fact = min( 1.0 _d 0, alpha + (1.0-alpha)*( rh-rhcrit(i,L)) /
2477 molod 1.1 1 (1.0-rhcrit(i,L)) )
2478     endif
2479    
2480     C Do not allow clouds above 10 mb
2481     if( pl(i,L).ge.10.0 ) CLSBTH(I,L) = fact
2482     RLAR(I) = RLAR(I)-rainmax(I)
2483     QL(I,L) = QL(I,L)+rainmax(I)*TEMP3(I,L)
2484     TL(I,L) = TL(I,L)-rainmax(I)*TEMP3(I,L)*ELOCP
2485     C Large-scale water
2486     cldlz(i,L) = cldlz(i,L) - rainmax(i)*temp3(i,L)
2487     ENDIF
2488     ENDDO
2489    
2490     DO I=1,IRUN
2491     IF((RLAR(I).GT.0.0).AND.(rainmax(I).GT.0.0))THEN
2492     RPOW=(RLAR(I)*RPHF*TEMP2(I,L))**ZP578
2493     EXPARG = ZM1P04*tmscl*RPOW
2494     AREARAT = ONE-(EXP(EXPARG))
2495     TEMP1(I,7) = rainmax(I)*AREARAT
2496     IF(TEMP1(I,7).GE.RLAR(I)) TEMP1(I,7) = RLAR(I)
2497     RLAR(I) = RLAR(I)-TEMP1(I,7)
2498     QL(I,L) = QL(I,L)+TEMP1(I,7)*TEMP3(I,L)
2499     TL(I,L) = TL(I,L)-TEMP1(I,7)*TEMP3(I,L)*ELOCP
2500     ENDIF
2501     ENDDO
2502    
2503     200 CONTINUE
2504    
2505     RETURN
2506     END
2507     subroutine srclouds (th,q,plk,pl,plke,cloud,cldwat,irun,irise,
2508     1 rhc,offset,alpha)
2509     C***********************************************************************
2510     C
2511     C PURPOSE:
2512     C ========
2513     C Compute non-precipitating cloud fractions
2514     C based on Slingo and Ritter (1985).
2515     C Remove cloudiness where conditionally unstable.
2516     C
2517     C INPUT:
2518     C ======
2519     C th ......... Potential Temperature (irun,irise)
2520     C q .......... Specific Humidity (irun,irise)
2521     C plk ........ P**Kappa at mid-layer (irun,irise)
2522     C pl ......... Pressure at mid-layer (irun,irise)
2523     C plke ....... P**Kappa at edge (irun,irise+1)
2524     C irun ....... Horizontal dimension
2525     C irise ...... Vertical dimension
2526     C
2527     C OUTPUT:
2528     C =======
2529     C cloud ...... Cloud Fraction (irun,irise)
2530     C
2531     C***********************************************************************
2532    
2533     implicit none
2534     integer irun,irise
2535    
2536 molod 1.13 _RL th(irun,irise)
2537     _RL q(irun,irise)
2538     _RL plk(irun,irise)
2539     _RL pl(irun,irise)
2540     _RL plke(irun,irise+1)
2541    
2542     _RL cloud(irun,irise)
2543     _RL cldwat(irun,irise)
2544     _RL qs(irun,irise)
2545    
2546     _RL cp, alhl, getcon, akap
2547     _RL ratio, temp, elocp
2548     _RL rhcrit,rh,dum
2549 molod 1.9 integer i,L
2550 molod 1.1
2551 molod 1.13 _RL rhc(irun,irise)
2552     _RL offset,alpha
2553 molod 1.1
2554     c Explicit Inline Directives
2555     c --------------------------
2556 molod 1.10 #ifdef CRAY
2557     #ifdef f77
2558 molod 1.1 cfpp$ expand (qsat)
2559     #endif
2560     #endif
2561    
2562     cp = getcon('CP')
2563     alhl = getcon('LATENT HEAT COND')
2564     elocp = alhl/cp
2565     akap = getcon('KAPPA')
2566    
2567     do L = 1,irise
2568     do i = 1,irun
2569     temp = th(i,L)*plk(i,L)
2570     call qsat ( temp,pl(i,L),qs(i,L),dum,.false. )
2571     enddo
2572     enddo
2573    
2574     do L = 2,irise
2575     do i = 1,irun
2576     rh = q(i,L)/qs(i,L)
2577    
2578     rhcrit = rhc(i,L) - offset
2579     ratio = alpha*(rh-rhcrit)/offset
2580    
2581     if(cloud(i,L).eq. 0.0 .and. ratio.gt.0.0 ) then
2582 ce107 1.34 cloud(i,L) = min( ratio,1.0 _d 0)
2583 molod 1.1 endif
2584    
2585     enddo
2586     enddo
2587    
2588     c Reduce clouds from conditionally unstable layer
2589     c -----------------------------------------------
2590     call ctei ( th,q,cloud,cldwat,pl,plk,plke,irun,irise )
2591    
2592     return
2593     end
2594    
2595     subroutine ctei ( th,q,cldfrc,cldwat,pl,plk,plke,im,lm )
2596     implicit none
2597     integer im,lm
2598 molod 1.13 _RL th(im,lm),q(im,lm),plke(im,lm+1),cldwat(im,lm)
2599     _RL plk(im,lm),pl(im,lm),cldfrc(im,lm)
2600 molod 1.1 integer i,L
2601 molod 1.13 _RL getcon,cp,alhl,elocp,cpoel,t,p,s,qs,dqsdt,dq
2602     _RL k,krd,kmm,f
2603 molod 1.1
2604     cp = getcon('CP')
2605     alhl = getcon('LATENT HEAT COND')
2606     cpoel = cp/alhl
2607     elocp = alhl/cp
2608    
2609     do L=lm,2,-1
2610     do i=1,im
2611     dq = q(i,L)+cldwat(i,L)-q(i,L-1)-cldwat(i,L-1)
2612     if( dq.eq.0.0 ) dq = 1.0e-20
2613     k = 1.0 + cpoel*plke(i,L)*( th(i,L)-th(i,L-1) ) / dq
2614    
2615     t = th(i,L)*plk(i,L)
2616     p = pl(i,L)
2617     call qsat ( t,p,qs,dqsdt,.true. )
2618    
2619     krd = ( cpoel*t*(1+elocp*dqsdt) )/( 1 + 1.608*dqsdt*t )
2620    
2621     kmm = ( 1+elocp*dqsdt )*( 1 + 0.392*cpoel*t )
2622     . / ( 2+(1+1.608*cpoel*t)*elocp*dqsdt )
2623    
2624     s = ( (k-krd)/(kmm-krd) )
2625 ce107 1.34 f = 1.0 - min( 1.0 _d 0, max(0.0 _d 0,1.0-exp(-s)) )
2626 molod 1.1
2627     cldfrc(i,L) = cldfrc(i,L)*f
2628     cldwat(i,L) = cldwat(i,L)*f
2629    
2630     enddo
2631     enddo
2632    
2633     return
2634     end
2635    
2636     subroutine back2grd(gathered,indeces,scattered,irun)
2637     implicit none
2638     integer i,irun,indeces(irun)
2639 molod 1.13 _RL gathered(irun),scattered(irun)
2640     _RL temp(irun)
2641 molod 1.1 do i = 1,irun
2642     temp(indeces(i)) = gathered(i)
2643     enddo
2644     do i = 1,irun
2645     scattered(i) = temp(i)
2646     enddo
2647     return
2648     end

  ViewVC Help
Powered by ViewVC 1.1.22