/[MITgcm]/MITgcm/pkg/fizhi/fizhi_moist.F
ViewVC logotype

Annotation of /MITgcm/pkg/fizhi/fizhi_moist.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.31 - (hide annotations) (download)
Fri Mar 11 14:47:39 2005 UTC (19 years, 3 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint57g_post, checkpoint57g_pre, checkpoint57f_pre, checkpoint57h_done, checkpoint57f_post, checkpoint57h_pre, checkpoint57h_post
Changes since 1.30: +1 -4 lines
also get rid of the counter for UDIAG1 & UDIAG2 (removed previously)

1 jmc 1.31 C $Header: /u/gcmpack/MITgcm/pkg/fizhi/fizhi_moist.F,v 1.30 2005/03/09 23:25:18 molod Exp $
2 molod 1.1 C $Name: $
3 molod 1.2
4 molod 1.13 #include "FIZHI_OPTIONS.h"
5 molod 1.5 subroutine moistio (ndmoist,istrip,npcs,
6 molod 1.4 . lowlevel,midlevel,nltop,nsubmin,nsubmax,Lup,
7 molod 1.21 . pz,plz,plze,dpres,pkht,pkl,uz,vz,tz,qz,bi,bj,ntracerin,ptracer,
8     . qqz,dumoist,dvmoist,dtmoist,dqmoist,cumfric,
9 molod 1.4 . im,jm,lm,ptop,
10 molod 1.1 . iras,rainlsp,rainconv,snowfall,
11     . nswcld,cldtot_sw,cldras_sw,cldlsp_sw,nswlz,swlz,
12     . nlwcld,cldtot_lw,cldras_lw,cldlsp_lw,nlwlz,lwlz,
13 molod 1.2 . lpnt,myid)
14 molod 1.1
15 molod 1.8 implicit none
16    
17 molod 1.2 #ifdef ALLOW_DIAGNOSTICS
18 molod 1.8 #include "SIZE.h"
19 molod 1.25 #include "DIAGNOSTICS_SIZE.h"
20     #include "DIAGNOSTICS.h"
21 molod 1.2 #endif
22 molod 1.1
23     c Input Variables
24     c ---------------
25 molod 1.8 integer im,jm,lm
26 molod 1.5 integer ndmoist,istrip,npcs
27 molod 1.21 integer bi,bj,ntracerin,ptracer
28 molod 1.4 integer lowlevel,midlevel,nltop,nsubmin,nsubmax,Lup
29 molod 1.13 _RL pz(im,jm),plz(im,jm,lm),plze(im,jm,lm+1),dpres(im,jm,lm)
30     _RL pkht(im,jm,lm+1),pkl(im,jm,lm)
31 molod 1.21 _RL tz(im,jm,lm),qz(im,jm,lm,ntracerin)
32     _RL uz(im,jm,lm),vz(im,jm,lm)
33 molod 1.13 _RL qqz(im,jm,lm)
34     _RL dumoist(im,jm,lm),dvmoist(im,jm,lm)
35 molod 1.21 _RL dtmoist(im,jm,lm),dqmoist(im,jm,lm,ntracerin)
36     logical cumfric
37 molod 1.13 _RL ptop
38 molod 1.5 integer iras
39 molod 1.13 _RL rainlsp(im,jm),rainconv(im,jm),snowfall(im,jm)
40 molod 1.5 integer nswcld,nswlz
41 molod 1.13 _RL cldlsp_sw(im,jm,lm),cldras_sw(im,jm,lm)
42     _RL cldtot_sw(im,jm,lm),swlz(im,jm,lm)
43 molod 1.5 integer nlwcld,nlwlz
44 molod 1.13 _RL cldlsp_lw(im,jm,lm),cldras_lw(im,jm,lm)
45     _RL cldtot_lw(im,jm,lm),lwlz(im,jm,lm)
46 molod 1.5 logical lpnt
47     integer myid
48 molod 1.1
49     c Local Variables
50     c ---------------
51 molod 1.4 integer ncrnd,nsecf
52 molod 1.1
53 molod 1.13 _RL fracqq, dum
54 molod 1.4 integer snowcrit
55 molod 1.1 parameter (fracqq = 0.1)
56 molod 1.14 _RL one
57     parameter (one=1.)
58 molod 1.1
59 molod 1.13 _RL cldsr(im,jm,lm)
60     _RL srcld(istrip,lm)
61 molod 1.1
62 molod 1.13 _RL plev
63     _RL cldnow,cldlsp_mem,cldlsp,cldras_mem,cldras
64     _RL watnow,watmin,cldmin
65     _RL cldprs(im,jm),cldtmp(im,jm)
66     _RL cldhi (im,jm),cldlow(im,jm)
67     _RL cldmid(im,jm),totcld(im,jm)
68    
69     _RL CLDLS(im,jm,lm) , CPEN(im,jm,lm)
70     _RL tmpimjm(im,jm)
71     _RL lsp_new(im,jm)
72     _RL conv_new(im,jm)
73     _RL snow_new(im,jm)
74 molod 1.1
75 molod 1.13 _RL qqcolmin(im,jm)
76     _RL qqcolmax(im,jm)
77 molod 1.1 integer levpbl(im,jm)
78    
79     c Gathered Arrays for Variable Cloud Base
80     c ---------------------------------------
81 molod 1.13 _RL raincgath(im*jm)
82     _RL pigather(im*jm)
83     _RL thgather(im*jm,lm)
84     _RL shgather(im*jm,lm)
85     _RL pkzgather(im*jm,lm)
86     _RL pkegather(im*jm,lm+1)
87     _RL plzgather(im*jm,lm)
88     _RL plegather(im*jm,lm+1)
89     _RL dpgather(im*jm,lm)
90     _RL tmpgather(im*jm,lm)
91     _RL deltgather(im*jm,lm)
92     _RL delqgather(im*jm,lm)
93 molod 1.21 _RL ugather(im*jm,lm,ntracerin+2-ptracer)
94     _RL delugather(im*jm,lm,ntracerin+2-ptracer)
95 molod 1.13 _RL deltrnev(im*jm,lm)
96     _RL delqrnev(im*jm,lm)
97 molod 1.1
98     integer nindeces(lm)
99     integer pblindex(im*jm)
100     integer levgather(im*jm)
101    
102     c Stripped Arrays
103     c ---------------
104 molod 1.13 _RL saveth (istrip,lm)
105     _RL saveq (istrip,lm)
106 molod 1.21 _RL saveu (istrip,lm,ntracerin+2-ptracer)
107     _RL usubcl (istrip, ntracerin+2-ptracer)
108 molod 1.13
109     _RL ple(istrip,lm+1)
110     _RL dp(istrip,lm)
111     _RL TL(ISTRIP,lm) , SHL(ISTRIP,lm)
112     _RL PL(ISTRIP,lm) , PLK(ISTRIP,lm)
113     _RL PLKE(ISTRIP,lm+1)
114     _RL TH(ISTRIP,lm) ,CVTH(ISTRIP,lm)
115     _RL CVQ(ISTRIP,lm)
116 molod 1.21 _RL UL(ISTRIP,lm,ntracerin+2-ptracer)
117     _RL cvu(istrip,lm,ntracerin+2-ptracer)
118 molod 1.13 _RL CLMAXO(ISTRIP,lm),CLBOTH(ISTRIP,lm)
119     _RL CLSBTH(ISTRIP,lm)
120     _RL TMP1(ISTRIP,lm), TMP2(ISTRIP,lm)
121     _RL TMP3(ISTRIP,lm), TMP4(ISTRIP,lm+1)
122     _RL TMP5(ISTRIP,lm+1)
123 molod 1.1 integer ITMP1(ISTRIP,lm), ITMP2(ISTRIP,lm)
124    
125 molod 1.13 _RL PRECIP(ISTRIP), PCNET(ISTRIP)
126     _RL SP(ISTRIP), PREP(ISTRIP)
127     _RL PCPEN (ISTRIP,lm)
128 molod 1.1 integer pbl(istrip),depths(lm)
129    
130 molod 1.13 _RL cldlz(istrip,lm), cldwater(im,jm,lm)
131     _RL rhfrac(istrip), rhmin, pup, ppbl, rhcrit(istrip,lm)
132     _RL offset, alpha, rasmax
133 molod 1.1
134     logical first
135     logical lras
136 molod 1.13 _RL clfrac (istrip,lm)
137     _RL cldmas (istrip,lm)
138     _RL detrain(istrip,lm)
139     _RL psubcld (istrip), psubcldg (im,jm)
140     _RL psubcld_cnt(istrip), psubcldgc(im,jm)
141     _RL rnd(lm/2)
142 molod 1.1 DATA FIRST /.TRUE./
143    
144 molod 1.4 integer imstp,nsubcl,nlras
145 molod 1.16 integer i,j,iloop,indx,indgath,l,nn,num,numdeps,nt
146 molod 1.13 _RL tmstp,tminv,sday,grav,alhl,cp,elocp,gamfac
147     _RL rkappa,p0kappa,p0kinv,ptopkap,pcheck
148     _RL tice,getcon,pi
149 molod 1.21 integer ntracer,ntracedim, ntracex
150 molod 1.1
151     C **********************************************************************
152     C **** INITIALIZATION ****
153     C **********************************************************************
154    
155 molod 1.21 C Add U and V components to tracer array for cumulus friction
156    
157     if(cumfric) then
158     ntracer = ntracerin + 2
159     else
160     ntracer = ntracerin
161     endif
162 molod 1.18 ntracedim= max(ntracer-ptracer,1)
163 molod 1.21 ntracex= ntracer-ptracer
164 molod 1.1 IMSTP = nsecf(NDMOIST)
165     TMSTP = FLOAT(IMSTP)
166     TMINV = 1. / TMSTP
167    
168     C Minimum Large-Scale Cloud Fraction at rhcrit
169     alpha = 0.80
170 molod 1.2 C Difference in fraction between SR and LS Threshold
171 molod 1.1 offset = 0.10
172 molod 1.2 C Large-Scale Relative Humidity Threshold in PBL
173 molod 1.1 rhmin = 0.90
174     C Maximum Cloud Fraction associated with RAS
175     rasmax = 1.00
176    
177     nn = 3*3600.0/tmstp + 1
178     C Threshold for Cloud Fraction Memory
179     cldmin = rasmax*(1.0-tmstp/3600.)**nn
180     C Threshold for Cloud Liquid Water Memory
181     watmin = 1.0e-8
182    
183     SDAY = GETCON('SDAY')
184     GRAV = GETCON('GRAVITY')
185     ALHL = GETCON('LATENT HEAT COND')
186     CP = GETCON('CP')
187     ELOCP = GETCON('LATENT HEAT COND') / GETCON('CP')
188     GAMFAC = GETCON('LATENT HEAT COND') * GETCON('EPS') * ELOCP
189     . / GETCON('RGAS')
190     RKAPPA = GETCON('KAPPA')
191     P0KAPPA = 1000.0**RKAPPA
192     P0KINV = 1. / P0KAPPA
193     PTOPKAP = PTOP**RKAPPA
194     tice = getcon('FREEZING-POINT')
195     PI = 4.*atan(1.)
196    
197 molod 1.4 c Determine Total number of Random Clouds to Check
198 molod 1.1 c ---------------------------------------------
199 molod 1.24 ncrnd = (lm-nltop+1)/2
200 molod 1.1
201 molod 1.19 if(first .and. myid.eq.1 .and. bi.eq.1 ) then
202 molod 1.1 print *
203 molod 1.4 print *,'Top Level Allowed for Convection : ',nltop
204     print *,' Highest Sub-Cloud Level: ',nsubmax
205     print *,' Lowest Sub-Cloud Level: ',nsubmin
206 molod 1.1 print *,' Total Number of Random Clouds: ',ncrnd
207     print *
208     first = .false.
209     endif
210    
211     c And now find PBL depth - the level where qq = fracqq * qq at surface
212     c --------------------------------------------------------------------
213     do j = 1,jm
214     do i = 1,im
215     qqcolmin(i,j) = qqz(i,j,lm)*fracqq
216     qqcolmax(i,j) = qqz(i,j,lm)
217     levpbl(i,j) = lm+1
218     enddo
219     enddo
220    
221     DO L = lm-1,1,-1
222     DO j = 1,jm
223     DO i = 1,im
224     IF((qqz(i,j,l).gt.qqcolmax(i,j))
225     1 .and.(levpbl(i,j).eq.lm+1))then
226     qqcolmax(i,j) = qqz(i,j,l)
227     qqcolmin(i,j) = fracqq*qqcolmax(i,j)
228     endif
229     if((qqz(i,j,l).lt.qqcolmin(i,j))
230     1 .and.(levpbl(i,j).eq.lm+1))levpbl(i,j)=L+1
231     enddo
232     enddo
233     enddo
234    
235     do j = 1,jm
236     do i = 1,im
237     if(levpbl(i,j).gt.nsubmin) levpbl(i,j) = nsubmin
238     if(levpbl(i,j).lt.nsubmax) levpbl(i,j) = nsubmax
239     enddo
240     enddo
241    
242    
243     c Set up the array of indeces of subcloud levels for the gathering
244     c ----------------------------------------------------------------
245 molod 1.16 indx = 0
246 molod 1.1 do L = nsubmin,nltop,-1
247     do j = 1,jm
248     do i = 1,im
249     if(levpbl(i,j).eq.L) then
250 molod 1.16 indx = indx + 1
251     pblindex(indx) = (j-1)*im + i
252 molod 1.1 endif
253     enddo
254     enddo
255     enddo
256    
257 molod 1.16 do indx = 1,im*jm
258     levgather(indx) = levpbl(pblindex(indx),1)
259     pigather(indx) = pz(pblindex(indx),1)
260     pkegather(indx,lm+1) = pkht(pblindex(indx),1,lm+1)
261     plegather(indx,lm+1) = plze(pblindex(indx),1,lm+1)
262 molod 1.1 enddo
263    
264     do L = 1,lm
265 molod 1.16 do indx = 1,im*jm
266     thgather(indx,L) = tz(pblindex(indx),1,L)
267     shgather(indx,L) = qz(pblindex(indx),1,L,1)
268     pkegather(indx,L) = pkht(pblindex(indx),1,L)
269     pkzgather(indx,L) = pkl(pblindex(indx),1,L)
270     plegather(indx,L) = plze(pblindex(indx),1,L)
271     plzgather(indx,L) = plz(pblindex(indx),1,L)
272     dpgather(indx,L) = dpres(pblindex(indx),1,L)
273 molod 1.1 enddo
274     enddo
275 molod 1.21 C General Tracers
276     C----------------
277     do nt = 1,ntracerin-ptracer
278     do L = 1,lm
279     do indx = 1,im*jm
280     ugather(indx,L,nt) = qz(pblindex(indx),1,L,nt+ptracer)
281     enddo
282     enddo
283     enddo
284    
285     if(cumfric) then
286     C Cumulus Friction - load u and v wind components into tracer array
287     C------------------------------------------------------------------
288     do L = 1,lm
289     do indx = 1,im*jm
290     ugather(indx,L,ntracerin-ptracer+1) = uz(pblindex(indx),1,L)
291     ugather(indx,L,ntracerin-ptracer+2) = vz(pblindex(indx),1,L)
292     enddo
293     enddo
294    
295     endif
296 molod 1.1
297     c bump the counter for number of calls to convection
298     c --------------------------------------------------
299     iras = iras + 1
300     if( iras.ge.1e9 ) iras = 1
301    
302     c select the 'random' cloud detrainment levels for RAS
303     c ----------------------------------------------------
304     call rndcloud(iras,ncrnd,rnd,myid)
305    
306     do l=1,lm
307     do j=1,jm
308     do i=1,im
309 molod 1.21 dumoist(i,j,l) = 0.
310     dvmoist(i,j,l) = 0.
311 molod 1.1 dtmoist(i,j,l) = 0.
312 molod 1.21 do nt = 1,ntracerin
313 molod 1.1 dqmoist(i,j,l,nt) = 0.
314     enddo
315     enddo
316     enddo
317     enddo
318    
319     C***********************************************************************
320     C **** LOOP OVER NPCS PEICES ****
321     C **********************************************************************
322    
323     DO 1000 NN = 1,NPCS
324    
325     C **********************************************************************
326     C **** VARIABLE INITIALIZATION ****
327     C **********************************************************************
328    
329     CALL STRIP ( pigather, SP ,im*jm,ISTRIP,1 ,NN )
330     CALL STRIP ( pkzgather, PLK ,im*jm,ISTRIP,lm,NN )
331 molod 1.6 CALL STRIP ( pkegather, PLKE ,im*jm,ISTRIP,lm+1,NN )
332     CALL STRIP ( plzgather, PL ,im*jm,ISTRIP,lm,NN )
333     CALL STRIP ( plegather, PLE ,im*jm,ISTRIP,lm+1,NN )
334     CALL STRIP ( dpgather, dp ,im*jm,ISTRIP,lm,NN )
335 molod 1.1 CALL STRIP ( thgather, TH ,im*jm,ISTRIP,lm,NN )
336     CALL STRIP ( shgather, SHL ,im*jm,ISTRIP,lm,NN )
337     CALL STRINT( levgather, pbl ,im*jm,ISTRIP,1 ,NN )
338    
339 molod 1.21 do nt = 1,ntracer-ptracer
340     call strip ( ugather(1,1,nt), ul(1,1,nt),im*jm,istrip,lm,nn )
341     enddo
342 molod 1.1
343     C **********************************************************************
344     C **** SETUP FOR RAS CUMULUS PARAMETERIZATION ****
345     C **********************************************************************
346    
347     DO L = 1,lm
348     DO I = 1,ISTRIP
349     TH(I,L) = TH(I,L) * P0KAPPA
350     CLMAXO(I,L) = 0.
351     CLBOTH(I,L) = 0.
352     cldmas(I,L) = 0.
353     detrain(I,L) = 0.
354     ENDDO
355     ENDDO
356    
357     do L = 1,lm
358     depths(L) = 0
359     enddo
360    
361     numdeps = 0
362     do L = nsubmin,nltop,-1
363     nindeces(L) = 0
364     do i = 1,istrip
365     if(pbl(i).eq.L) nindeces(L) = nindeces(L) + 1
366     enddo
367     if(nindeces(L).gt.0) then
368     numdeps = numdeps + 1
369     depths(numdeps) = L
370     endif
371     enddo
372    
373     C Initiate a do-loop around RAS for the number of different
374     C sub-cloud layer depths in this strip
375     C --If all subcloud depths are the same, execute loop once
376     C Otherwise loop over different subcloud layer depths
377    
378     num = 1
379     DO iloop = 1,numdeps
380    
381     nsubcl = depths(iloop)
382    
383     c Compute sub-cloud values for Temperature and Spec.Hum.
384     c ------------------------------------------------------
385     DO 600 I=num,num+nindeces(nsubcl)-1
386     TMP1(I,2) = 0.
387     TMP1(I,3) = 0.
388     600 CONTINUE
389    
390     NLRAS = NSUBCL - NLTOP + 1
391     DO 601 L=NSUBCL,lm
392     DO 602 I=num,num+nindeces(nsubcl)-1
393     TMP1(I,2) = TMP1(I,2) + (PLE(I,L+1)-PLE(I,L))*TH (I,L)/sp(i)
394     TMP1(I,3) = TMP1(I,3) + (PLE(I,L+1)-PLE(I,L))*SHL(I,L)/sp(i)
395     602 CONTINUE
396     601 CONTINUE
397     DO 603 I=num,num+nindeces(nsubcl)-1
398     TMP1(I,4) = 1. / ( (PLE(I,lm+1)-PLE(I,NSUBCL))/sp(I) )
399     TH(I,NSUBCL) = TMP1(I,2)*TMP1(I,4)
400     SHL(I,NSUBCL) = TMP1(I,3)*TMP1(I,4)
401     603 CONTINUE
402    
403     c Save initial value of tracers and compute sub-cloud value
404     c ---------------------------------------------------------
405 molod 1.21 DO NT = 1,ntracer-ptracer
406     do L = 1,lm
407     do i = num,num+nindeces(nsubcl)-1
408     saveu(i,L,nt) = ul(i,L,nt)
409     enddo
410     enddo
411     DO I=num,num+nindeces(nsubcl)-1
412     TMP1(I,2) = 0.
413     ENDDO
414     DO L=NSUBCL,lm
415     DO I=num,num+nindeces(nsubcl)-1
416     TMP1(I,2) = TMP1(I,2)+(PLE(I,L+1)-PLE(I,L))*UL(I,L,NT)/sp(i)
417     ENDDO
418     ENDDO
419     DO I=num,num+nindeces(nsubcl)-1
420     UL(I,NSUBCL,NT) = TMP1(I,2)*TMP1(I,4)
421     usubcl(i,nt) = ul(i,nsubcl,nt)
422     ENDDO
423     ENDDO
424 molod 1.1
425     c Compute Pressure Arrays for RAS
426     c -------------------------------
427     DO 111 L=1,lm
428     DO 112 I=num,num+nindeces(nsubcl)-1
429     TMP4(I,L) = PLE(I,L)
430     112 CONTINUE
431     111 CONTINUE
432     DO I=num,num+nindeces(nsubcl)-1
433     TMP5(I,1) = PTOPKAP / P0KAPPA
434     ENDDO
435     DO L=2,lm
436     DO I=num,num+nindeces(nsubcl)-1
437 molod 1.6 TMP5(I,L) = PLKE(I,L)*P0KINV
438 molod 1.1 ENDDO
439     ENDDO
440     DO I=num,num+nindeces(nsubcl)-1
441     TMP4(I,lm+1) = PLE (I,lm+1)
442 molod 1.6 TMP5(I,lm+1) = PLKE(I,lm+1)*P0KINV
443 molod 1.1 ENDDO
444     DO 113 I=num,num+nindeces(nsubcl)-1
445     TMP4(I,NSUBCL+1) = PLE (I,lm+1)
446 molod 1.6 TMP5(I,NSUBCL+1) = PLKE(I,lm+1)*P0KINV
447 molod 1.1 113 CONTINUE
448    
449     do i=num,num+nindeces(nsubcl)-1
450     C Temperature at top of sub-cloud layer
451     tmp2(i,1) = TH(i,NSUBCL) * PLKE(i,NSUBCL)/P0KAPPA
452     C Pressure at top of sub-cloud layer
453     tmp2(i,2) = tmp4(i,nsubcl)
454     enddo
455    
456     C CHANGED THIS: no RH requirement for RAS
457     c call vqsat ( tmp2(num,1),tmp2(num,2),tmp2(num,3),
458     c . dum,.false.,nindeces(nsubcl) )
459     c do i=num,num+nindeces(nsubcl)-1
460     c rh = SHL(I,NSUBCL) / tmp2(i,3)
461     c if (rh .le. 0.85) then
462     c rhfrac(i) = 0.
463     c else if (rh .ge. 0.95) then
464     c rhfrac(i) = 1.
465     c else
466     c rhfrac(i) = (rh-0.85)*10.
467     c endif
468     c enddo
469     do i=num,num+nindeces(nsubcl)-1
470     rhfrac(i) = 1.
471     enddo
472    
473     C Compute RH threshold for Large-scale condensation
474     C Used in Slingo-Ritter clouds as well - define offset between SR and LS
475    
476     C Top level of atan func above this rh_threshold = rhmin
477     pup = 600.
478     do i=num,num+nindeces(nsubcl)-1
479 molod 1.2 do L = nsubcl, lm
480     rhcrit(i,L) = 1.
481     enddo
482     do L = 1, nsubcl-1
483 molod 1.6 pcheck = pl(i,L)
484 molod 1.2 if (pcheck .le. pup) then
485     rhcrit(i,L) = rhmin
486     else
487 molod 1.6 ppbl = pl(i,nsubcl)
488 molod 1.2 rhcrit(i,L) = rhmin + (1.-rhmin)/(19.) *
489     . ((atan( (2.*(pcheck-pup)/(ppbl-pup)-1.) *
490 molod 1.1 . tan(20.*pi/21.-0.5*pi) )
491     . + 0.5*pi) * 21./pi - 1.)
492 molod 1.2 endif
493     enddo
494 molod 1.1 enddo
495    
496     c Save Initial Values of Temperature and Specific Humidity
497     c --------------------------------------------------------
498     do L = 1,lm
499     do i = num,num+nindeces(nsubcl)-1
500     saveth(i,L) = th (i,L)
501     saveq (i,L) = shl(i,L)
502     PCPEN (i,L) = 0.
503     CLFRAC(i,L) = 0.
504     enddo
505     enddo
506    
507     CALL RAS ( NN,istrip,nindeces(nsubcl),NLRAS,NLTOP,lm,TMSTP
508 molod 1.21 1, UL(num,1,1),ntracedim,ntracex,TH(num,NLTOP),SHL(num,NLTOP)
509 molod 1.1 2, TMP4(num,NLTOP), TMP5(num,NLTOP),rnd, ncrnd, PCPEN(num,NLTOP)
510     3, CLBOTH(num,NLTOP), CLFRAC(num,NLTOP)
511     4, cldmas(num,nltop), detrain(num,nltop)
512     8, cp,grav,rkappa,alhl,rhfrac(num),rasmax )
513    
514     c Compute Diagnostic CLDMAS in RAS Subcloud Layers
515     c ------------------------------------------------
516     do L=nsubcl,lm
517     do I=num,num+nindeces(nsubcl)-1
518 molod 1.6 dum = dp(i,L)/(ple(i,lm+1)-ple(i,nsubcl))
519 molod 1.1 cldmas(i,L) = cldmas(i,L-1) - dum*cldmas(i,nsubcl-1)
520     enddo
521     enddo
522    
523     c Update Theta and Moisture due to RAS
524     c ------------------------------------
525     DO L=1,nsubcl
526     DO I=num,num+nindeces(nsubcl)-1
527     CVTH(I,L) = (TH (I,L) - saveth(i,l))
528     CVQ (I,L) = (SHL(I,L) - saveq (i,l))
529     ENDDO
530     ENDDO
531     DO L=nsubcl+1,lm
532     DO I=num,num+nindeces(nsubcl)-1
533     CVTH(I,L) = cvth(i,nsubcl)
534     CVQ (I,L) = cvq (i,nsubcl)
535     ENDDO
536     ENDDO
537    
538     DO L=nsubcl+1,lm
539     DO I=num,num+nindeces(nsubcl)-1
540     TH (I,L) = saveth(i,l) + cvth(i,l)
541     SHL(I,L) = saveq (i,l) + cvq (i,l)
542     ENDDO
543     ENDDO
544     DO L=1,lm
545     DO I=num,num+nindeces(nsubcl)-1
546     CVTH(I,L) = CVTH(I,L) *P0KINV*SP(I)*tminv
547     CVQ (I,L) = CVQ (I,L) *SP(I)*tminv
548     ENDDO
549     ENDDO
550    
551     c Compute Tracer Tendency due to RAS
552     c ----------------------------------
553 molod 1.21 do nt = 1,ntracer-ptracer
554     DO L=1,nsubcl-1
555     DO I=num,num+nindeces(nsubcl)-1
556     CVU(I,L,nt) = ( UL(I,L,nt)-saveu(i,l,nt) )*sp(i)*tminv
557     ENDDO
558     ENDDO
559     DO L=nsubcl,lm
560     DO I=num,num+nindeces(nsubcl)-1
561     if( usubcl(i,nt).ne.0.0 ) then
562     cvu(i,L,nt) = ( ul(i,nsubcl,nt)-usubcl(i,nt) ) *
563     . ( saveu(i,L,nt)/usubcl(i,nt) )*sp(i)*tminv
564     else
565     cvu(i,L,nt) = 0.0
566     endif
567     ENDDO
568     ENDDO
569     enddo
570 molod 1.1
571     c Compute Diagnostic PSUBCLD (Subcloud Layer Pressure)
572     c ----------------------------------------------------
573     do i=num,num+nindeces(nsubcl)-1
574     lras = .false.
575     do L=nltop,nsubcl
576     if( cvq(i,L).ne.0.0 ) lras = .true.
577     enddo
578     psubcld (i) = 0.0
579     psubcld_cnt(i) = 0.0
580     if( lras ) then
581     psubcld (i) = sp(i)+ptop-ple(i,nsubcl)
582     psubcld_cnt(i) = 1.0
583     endif
584     enddo
585    
586    
587     C End of subcloud layer depth loop (iloop)
588    
589     num = num+nindeces(nsubcl)
590    
591     ENDDO
592    
593     C **********************************************************************
594     C **** TENDENCY UPDATES ****
595     C **** (Keep 'Gathered' tendencies in 'gather' arrays now) ****
596     C **********************************************************************
597    
598     call paste( CVTH,deltgather,istrip,im*jm,lm,NN )
599     call paste( CVQ,delqgather,istrip,im*jm,lm,NN )
600 molod 1.21 do nt = 1,ntracer-ptracer
601     call paste( CVU(1,1,nt),delugather(1,1,nt),istrip,im*jm,lm,NN )
602     enddo
603 molod 1.1
604     C **********************************************************************
605     C And now paste some arrays for filling diagnostics
606     C (use pkegather to hold detrainment and tmpgather for cloud mass flux)
607     C **********************************************************************
608    
609     if(icldmas .gt.0) call paste( cldmas,tmpgather,istrip,im*jm,lm,NN)
610     if(idtrain .gt.0) call paste(detrain,pkegather,istrip,im*jm,lm,NN)
611     if(ipsubcld.gt.0) then
612     call paste(psubcld ,psubcldg ,istrip,im*jm,1,NN)
613     call paste(psubcld_cnt,psubcldgc,istrip,im*jm,1,NN)
614     endif
615    
616     C *********************************************************************
617     C **** RE-EVAPORATION OF PENETRATING CONVECTIVE RAIN ****
618     C *********************************************************************
619    
620     CALL STRIP ( thgather,TH ,im*jm,ISTRIP,lm,NN)
621     CALL STRIP ( shgather,SHL,im*jm,ISTRIP,lm,NN)
622     DO L=1,lm
623     DO I=1,ISTRIP
624     TH(I,L) = TH(I,L) + CVTH(I,L)*tmstp/SP(I)
625     SHL(I,L) = SHL(I,L) + CVQ(I,L)*tmstp/SP(I)
626     TL(I,L) = TH(I,L)*PLK(I,L)
627     saveth(I,L) = th(I,L)
628     saveq (I,L) = SHL(I,L)
629     ENDDO
630     ENDDO
631    
632 molod 1.6 CALL RNEVP (NN,ISTRIP,lm,TL,SHL,PCPEN,PL,CLFRAC,SP,DP,PLKE,
633 molod 1.1 . PLK,TH,TMP1,TMP2,TMP3,ITMP1,ITMP2,PCNET,PRECIP,
634 molod 1.14 . CLSBTH,TMSTP,one,cp,grav,alhl,gamfac,cldlz,rhcrit,offset,alpha)
635 molod 1.1
636     C **********************************************************************
637     C **** TENDENCY UPDATES ****
638     C **********************************************************************
639    
640     DO L=1,lm
641    
642     DO I =1,ISTRIP
643     TMP1(I,L) = sp(i) * (SHL(I,L)-saveq(I,L)) * tminv
644     ENDDO
645     CALL PSTBMP(TMP1(1,L),delqgather(1,L),ISTRIP,im*jm,1,NN)
646    
647     DO I =1,ISTRIP
648     TMP1(I,L) = sp(i) * ((TL(I,L)/PLK(I,L))-saveth(i,l)) * tminv
649     ENDDO
650     CALL PSTBMP(TMP1(1,L),deltgather(1,L),ISTRIP,im*jm,1,NN)
651    
652     C Paste rain evap tendencies into arrays for diagnostic output
653     c ------------------------------------------------------------
654     if(idtls.gt.0)then
655     DO I =1,ISTRIP
656     TMP1(I,L) = ((TL(I,L)/PLK(I,L))-saveth(i,l))*plk(i,l)*sday*tminv
657     ENDDO
658     call paste(tmp1(1,L),deltrnev(1,L),istrip,im*jm,1,NN)
659     endif
660    
661     if(idqls.gt.0)then
662     DO I =1,ISTRIP
663     TMP1(I,L) = (SHL(I,L)-saveq(I,L)) * 1000. * sday * tminv
664     ENDDO
665     call paste(tmp1(1,L),delqrnev(1,L),istrip,im*jm,1,NN)
666     endif
667    
668     ENDDO
669    
670     C *********************************************************************
671     C Add Non-Precipitating Clouds where the relative
672     C humidity is less than 100%
673     C Apply Cloud Top Entrainment Instability
674     C *********************************************************************
675    
676     do L=1,lm
677     do i=1,istrip
678     srcld(i,L) = -clsbth(i,L)
679     enddo
680     enddo
681    
682     call srclouds (saveth,saveq,plk,pl,plke,clsbth,cldlz,istrip,lm,
683     . rhcrit,offset,alpha)
684    
685     do L=1,lm
686     do i=1,istrip
687     srcld(i,L) = srcld(i,L)+clsbth(i,L)
688     enddo
689     enddo
690    
691     C *********************************************************************
692     C **** PASTE CLOUD AMOUNTS ****
693     C *********************************************************************
694    
695     call paste ( srcld, cldsr,istrip,im*jm,lm,nn )
696     call paste ( cldlz,cldwater,istrip,im*jm,lm,nn )
697     call paste ( clsbth, cldls,istrip,im*jm,lm,nn )
698     call paste ( clboth, cpen ,istrip,im*jm,lm,nn )
699    
700     c compute Total Accumulated Precip for Landsurface Model
701     c ------------------------------------------------------
702     do i = 1,istrip
703     C Initialize Rainlsp, Rainconv and Snowfall
704     tmp1(i,1) = 0.0
705     tmp1(i,2) = 0.0
706     tmp1(i,3) = 0.0
707     enddo
708    
709     do i = 1,istrip
710     prep(i) = PRECIP(I) + PCNET(I)
711     tmp1(i,1) = PRECIP(I)
712     tmp1(i,2) = pcnet(i)
713     enddo
714     c
715     c check whether there is snow
716     c-------------------------------------------------------
717     c snow algorthm:
718     c if temperature profile from the surface level to 700 mb
719     c uniformaly c below zero, then precipitation (total) is
720     c snowfall. Else there is no snow.
721     c-------------------------------------------------------
722    
723     do i = 1,istrip
724     snowcrit=0
725     do l=lup,lm
726     if (saveth(i,l)*plk(i,l).le. tice ) then
727     snowcrit=snowcrit+1
728     endif
729     enddo
730     if (snowcrit .eq. (lm-lup+1)) then
731     tmp1(i,3) = prep(i)
732     tmp1(i,1)=0.0
733     tmp1(i,2)=0.0
734     endif
735     enddo
736    
737     CALL paste (tmp1(1,1), lsp_new,ISTRIP,im*jm,1,NN)
738     CALL paste (tmp1(1,2),conv_new,ISTRIP,im*jm,1,NN)
739     CALL paste (tmp1(1,3),snow_new,ISTRIP,im*jm,1,NN)
740    
741     if(iprecon.gt.0) then
742     CALL paste (pcnet,raincgath,ISTRIP,im*jm,1,NN)
743     endif
744    
745     C *********************************************************************
746     C **** End Major Stripped Region ****
747     C *********************************************************************
748    
749     1000 CONTINUE
750    
751     C Large Scale Rainfall, Conv rain, and snowfall
752     c ---------------------------------------------
753     call back2grd ( lsp_new,pblindex, lsp_new,im*jm)
754     call back2grd (conv_new,pblindex,conv_new,im*jm)
755     call back2grd (snow_new,pblindex,snow_new,im*jm)
756    
757     if(iprecon.gt.0) then
758     call back2grd (raincgath,pblindex,raincgath,im*jm)
759     endif
760    
761     c Subcloud Layer Pressure
762     c -----------------------
763     if(ipsubcld.gt.0) then
764     call back2grd (psubcldg ,pblindex,psubcldg ,im*jm)
765     call back2grd (psubcldgc,pblindex,psubcldgc,im*jm)
766     endif
767    
768     do L = 1,lm
769     C Delta theta,q, convective, max and ls clouds
770     c --------------------------------------------
771     call back2grd (deltgather(1,L),pblindex, dtmoist(1,1,L) ,im*jm)
772     call back2grd (delqgather(1,L),pblindex, dqmoist(1,1,L,1),im*jm)
773     call back2grd ( cpen(1,1,L),pblindex, cpen(1,1,L) ,im*jm)
774     call back2grd ( cldls(1,1,L),pblindex, cldls(1,1,L) ,im*jm)
775     call back2grd (cldwater(1,1,L),pblindex,cldwater(1,1,L) ,im*jm)
776     call back2grd ( pkzgather(1,L),pblindex, pkzgather(1,L) ,im*jm)
777    
778     C Diagnostics:
779     c ------------
780     if(icldmas.gt.0)call back2grd(tmpgather(1,L),pblindex,
781     . tmpgather(1,L),im*jm)
782     if(idtrain.gt.0)call back2grd(pkegather(1,L),pblindex,
783     . pkegather(1,L),im*jm)
784     if(idtls.gt.0)call back2grd(deltrnev(1,L),pblindex,
785     . deltrnev(1,L),im*jm)
786     if(idqls.gt.0)call back2grd(delqrnev(1,L),pblindex,
787     . delqrnev(1,L),im*jm)
788     if(icldnp.gt.0)call back2grd(cldsr(1,1,L),pblindex,
789     . cldsr(1,1,L),im*jm)
790     enddo
791    
792 molod 1.21 c General Tracers
793     c ---------------
794     do nt = 1,ntracerin-ptracer
795     do L = 1,lm
796     call back2grd (delugather(1,L,nt),pblindex,
797     . dqmoist(1,1,L,ptracer+nt),im*jm)
798     enddo
799     enddo
800    
801     if(cumfric) then
802    
803     c U and V for cumulus friction
804     c ----------------------------
805     do L = 1,lm
806     call back2grd (delugather(1,L,ntracerin-ptracer+1),pblindex,
807     . dumoist(1,1,L),im*jm)
808     call back2grd (delugather(1,L,ntracerin-ptracer+2),pblindex,
809     . dvmoist(1,1,L),im*jm)
810     enddo
811    
812     C Remove pi-weighting for u and v tendencies
813     do j = 1,jm
814     do i = 1,im
815     tmpimjm(i,j) = 1./pz(i,j)
816     enddo
817     enddo
818     do L = 1,lm
819     do j = 1,jm
820     do i = 1,im
821     dumoist(i,j,L) = dumoist(i,j,L) * tmpimjm(i,j)
822 molod 1.22 dvmoist(i,j,L) = dvmoist(i,j,L) * tmpimjm(i,j)
823 molod 1.21 enddo
824     enddo
825     enddo
826 molod 1.1
827 molod 1.22
828 molod 1.21 endif
829 molod 1.1
830     C **********************************************************************
831     C BUMP DIAGNOSTICS
832     C **********************************************************************
833    
834 molod 1.16
835 molod 1.1 c Sub-Cloud Layer
836     c -------------------------
837     if( ipsubcld.ne.0 ) then
838     do j = 1,jm
839     do i = 1,im
840 molod 1.3 qdiag(i,j,ipsubcld,bi,bj) = qdiag(i,j,ipsubcld,bi,bj) +
841     . psubcldg (i,j)
842     qdiag(i,j,ipsubcldc,bi,bj) = qdiag(i,j,ipsubcldc,bi,bj) +
843     . psubcldgc(i,j)
844 molod 1.1 enddo
845     enddo
846     endif
847    
848     c Non-Precipitating Cloud Fraction
849     c --------------------------------
850     if( icldnp.ne.0 ) then
851     do L = 1,lm
852     do j = 1,jm
853     do i = 1,im
854 molod 1.3 qdiag(i,j,icldnp+L-1,bi,bj) = qdiag(i,j,icldnp+L-1,bi,bj) +
855     . cldsr(i,j,L)
856 molod 1.1 enddo
857     enddo
858     enddo
859     ncldnp = ncldnp + 1
860     endif
861    
862     c Moist Processes Heating Rate
863     c ----------------------------
864     if(imoistt.gt.0) then
865     do L = 1,lm
866 molod 1.16 do j = 1,jm
867     do i = 1,im
868     indgath = (j-1)*im + i
869     qdiag(i,j,imoistt+L-1,bi,bj) = qdiag(i,j,imoistt+L-1,bi,bj) +
870     . (dtmoist(i,j,L)*sday*pkzgather(indgath,L)/pz(i,j))
871     enddo
872 molod 1.1 enddo
873     enddo
874     endif
875    
876     c Moist Processes Moistening Rate
877     c -------------------------------
878     if(imoistq.gt.0) then
879     do L = 1,lm
880     do j = 1,jm
881     do i = 1,im
882 molod 1.3 qdiag(i,j,imoistq+L-1,bi,bj) = qdiag(i,j,imoistq+L-1,bi,bj) +
883 molod 1.1 . (dqmoist(i,j,L,1)*sday*1000.0/pz(i,j))
884     enddo
885     enddo
886     enddo
887     endif
888    
889     c Cloud Mass Flux
890     c ---------------
891     if(icldmas.gt.0) then
892     do L = 1,lm
893 molod 1.16 do j = 1,jm
894     do i = 1,im
895     indgath = (j-1)*im + i
896     qdiag(i,j,icldmas+L-1,bi,bj) = qdiag(i,j,icldmas+L-1,bi,bj) +
897     . tmpgather(indgath,L)
898     enddo
899 molod 1.1 enddo
900     enddo
901     endif
902    
903     c Detrained Cloud Mass Flux
904     c -------------------------
905     if(idtrain.gt.0) then
906     do L = 1,lm
907 molod 1.16 do j = 1,jm
908     do i = 1,im
909     indgath = (j-1)*im + i
910     qdiag(i,j,idtrain+L-1,bi,bj) = qdiag(i,j,idtrain+L-1,bi,bj) +
911     . pkegather(indgath,L)
912     enddo
913 molod 1.1 enddo
914     enddo
915     endif
916    
917     c Grid-Scale Condensational Heating Rate
918     c --------------------------------------
919     if(idtls.gt.0) then
920     do L = 1,lm
921 molod 1.16 do j = 1,jm
922     do i = 1,im
923     indgath = (j-1)*im + i
924     qdiag(i,j,idtls+L-1,bi,bj) = qdiag(i,j,idtls+L-1,bi,bj) +
925     . deltrnev(indgath,L)
926     enddo
927 molod 1.1 enddo
928     enddo
929     endif
930    
931     c Grid-Scale Condensational Moistening Rate
932     c -----------------------------------------
933     if(idqls.gt.0) then
934     do L = 1,lm
935 molod 1.16 do j = 1,jm
936     do i = 1,im
937     indgath = (j-1)*im + i
938     qdiag(i,j,idqls+L-1,bi,bj) = qdiag(i,j,idqls+L-1,bi,bj) +
939     . delqrnev(indgath,L)
940     enddo
941 molod 1.1 enddo
942     enddo
943     endif
944    
945     c Total Precipitation
946     c -------------------
947     if(ipreacc.gt.0) then
948     do j = 1,jm
949     do i = 1,im
950 molod 1.3 qdiag(i,j,ipreacc,bi,bj) = qdiag(i,j,ipreacc,bi,bj)
951 molod 1.1 . + ( lsp_new(I,j)
952     . + snow_new(I,j)
953     . + conv_new(i,j) ) *sday*tminv
954     enddo
955     enddo
956     endif
957    
958     c Convective Precipitation
959     c ------------------------
960     if(iprecon.gt.0) then
961 molod 1.16 do j = 1,jm
962     do i = 1,im
963     indgath = (j-1)*im + i
964     qdiag(i,j,iprecon,bi,bj) = qdiag(i,j,iprecon,bi,bj) +
965     . raincgath(indgath)*sday*tminv
966     enddo
967 molod 1.1 enddo
968     endif
969    
970     C **********************************************************************
971     C **** Fill Rainfall and Snowfall Arrays for Land Surface Model ****
972     C **** Note: Precip Rates work when DT(turb)<DT(moist) ****
973     C **********************************************************************
974    
975     do j = 1,jm
976     do i = 1,im
977     rainlsp (i,j) = rainlsp (i,j) + lsp_new(i,j)*tminv
978     rainconv(i,j) = rainconv(i,j) + conv_new(i,j)*tminv
979     snowfall(i,j) = snowfall(i,j) + snow_new(i,j)*tminv
980     enddo
981     enddo
982    
983     C **********************************************************************
984     C *** Compute Time-averaged Quantities for Radiation ***
985     C *** CPEN => Cloud Fraction from RAS ***
986     C *** CLDLS => Cloud Fraction from RNEVP ***
987     C **********************************************************************
988    
989     do j = 1,jm
990     do i = 1,im
991     cldhi (i,j) = 0.
992     cldmid(i,j) = 0.
993     cldlow(i,j) = 0.
994     cldtmp(i,j) = 0.
995     cldprs(i,j) = 0.
996     tmpimjm(i,j) = 0.
997     enddo
998     enddo
999    
1000     c Set Moist-Process Memory Coefficient
1001     c ------------------------------------
1002     cldras_mem = 1.0-tmstp/ 3600.0
1003     cldlsp_mem = 1.0-tmstp/(3600.0*3)
1004    
1005     do L = 1,lm
1006     do i = 1,im*jm
1007 molod 1.6 plev = pl(i,L)
1008 molod 1.1
1009     c Compute Time-averaged Cloud and Water Amounts for Longwave Radiation
1010     c --------------------------------------------------------------------
1011     watnow = cldwater(i,1,L)
1012     if( plev.le.500.0 ) then
1013     cldras = min( max( cldras_lw(i,1,L)*cldras_mem,cpen(i,1,L)),1.0)
1014     else
1015     cldras = 0.0
1016     endif
1017     cldlsp = min( max( cldlsp_lw(i,1,L)*cldlsp_mem,cldls(i,1,L)),1.0)
1018    
1019     if( cldras.lt.cldmin ) cldras = 0.0
1020     if( cldlsp.lt.cldmin ) cldlsp = 0.0
1021    
1022     cldnow = max( cldlsp,cldras )
1023    
1024     lwlz(i,1,L) = ( nlwlz*lwlz(i,1,L) + watnow)/(nlwlz +1)
1025     cldtot_lw(i,1,L) = (nlwcld*cldtot_lw(i,1,L) + cldnow)/(nlwcld+1)
1026     cldlsp_lw(i,1,L) = (nlwcld*cldlsp_lw(i,1,L) + cldlsp)/(nlwcld+1)
1027     cldras_lw(i,1,L) = (nlwcld*cldras_lw(i,1,L) + cldras)/(nlwcld+1)
1028    
1029    
1030     c Compute Time-averaged Cloud and Water Amounts for Shortwave Radiation
1031     c ---------------------------------------------------------------------
1032     watnow = cldwater(i,1,L)
1033     if( plev.le.500.0 ) then
1034     cldras = min( max(cldras_sw(i,1,L)*cldras_mem, cpen(i,1,L)),1.0)
1035     else
1036     cldras = 0.0
1037     endif
1038     cldlsp = min( max(cldlsp_sw(i,1,L)*cldlsp_mem,cldls(i,1,L)),1.0)
1039    
1040     if( cldras.lt.cldmin ) cldras = 0.0
1041     if( cldlsp.lt.cldmin ) cldlsp = 0.0
1042    
1043     cldnow = max( cldlsp,cldras )
1044    
1045     swlz(i,1,L) = ( nswlz*swlz(i,1,L) + watnow)/(nswlz +1)
1046     cldtot_sw(i,1,L) = (nswcld*cldtot_sw(i,1,L) + cldnow)/(nswcld+1)
1047     cldlsp_sw(i,1,L) = (nswcld*cldlsp_sw(i,1,L) + cldlsp)/(nswcld+1)
1048     cldras_sw(i,1,L) = (nswcld*cldras_sw(i,1,L) + cldras)/(nswcld+1)
1049    
1050    
1051     c Compute Instantaneous Low-Mid-High Maximum Overlap Cloud Fractions
1052     c ----------------------------------------------------------------------
1053    
1054     if( L.lt.midlevel ) cldhi (i,1) = max( cldnow,cldhi (i,1) )
1055     if( L.ge.midlevel .and.
1056     . L.lt.lowlevel ) cldmid(i,1) = max( cldnow,cldmid(i,1) )
1057     if( L.ge.lowlevel ) cldlow(i,1) = max( cldnow,cldlow(i,1) )
1058    
1059     c Compute Cloud-Top Temperature and Pressure
1060     c ------------------------------------------
1061     cldtmp(i,1) = cldtmp(i,1) + cldnow*pkzgather(i,L)
1062     . * ( tz(i,1,L) + dtmoist(i,1,L)*tmstp/pz(i,1) )
1063     cldprs(i,1) = cldprs(i,1) + cldnow*plev
1064     tmpimjm(i,1) = tmpimjm(i,1) + cldnow
1065    
1066     enddo
1067     enddo
1068    
1069 molod 1.21 c Compute Instantaneous Total 2-D Cloud Fraction
1070 molod 1.1 c ----------------------------------------------
1071     do j = 1,jm
1072     do i = 1,im
1073     totcld(i,j) = 1.0 - (1.-cldhi (i,j))
1074     . * (1.-cldmid(i,j))
1075     . * (1.-cldlow(i,j))
1076     enddo
1077     enddo
1078    
1079    
1080     C **********************************************************************
1081     C *** Fill Cloud Top Pressure and Temperature Diagnostic ***
1082     C **********************************************************************
1083    
1084     if(icldtmp.gt.0) then
1085     do j = 1,jm
1086     do i = 1,im
1087     if( cldtmp(i,j).gt.0.0 ) then
1088 molod 1.3 qdiag(i,j,icldtmp,bi,bj) = qdiag(i,j,icldtmp,bi,bj) +
1089 molod 1.1 . cldtmp(i,j)*totcld(i,j)/tmpimjm(i,j)
1090 molod 1.3 qdiag(i,j,icttcnt,bi,bj) = qdiag(i,j,icttcnt,bi,bj) +
1091     . totcld(i,j)
1092 molod 1.1 endif
1093     enddo
1094     enddo
1095     endif
1096    
1097     if(icldprs.gt.0) then
1098     do j = 1,jm
1099     do i = 1,im
1100     if( cldprs(i,j).gt.0.0 ) then
1101 molod 1.3 qdiag(i,j,icldprs,bi,bj) = qdiag(i,j,icldprs,bi,bj) +
1102 molod 1.1 . cldprs(i,j)*totcld(i,j)/tmpimjm(i,j)
1103 molod 1.3 qdiag(i,j,ictpcnt,bi,bj) = qdiag(i,j,ictpcnt,bi,bj) +
1104     . totcld(i,j)
1105 molod 1.1 endif
1106     enddo
1107     enddo
1108     endif
1109    
1110     C **********************************************************************
1111     C **** INCREMENT COUNTERS ****
1112     C **********************************************************************
1113    
1114     nlwlz = nlwlz + 1
1115     nswlz = nswlz + 1
1116    
1117     nlwcld = nlwcld + 1
1118     nswcld = nswcld + 1
1119    
1120 molod 1.16 #ifdef ALLOW_DIAGNOSTICS
1121     if( (bi.eq.1) .and. (bj.eq.1) ) then
1122 molod 1.1 nmoistt = nmoistt + 1
1123     nmoistq = nmoistq + 1
1124     npreacc = npreacc + 1
1125     nprecon = nprecon + 1
1126    
1127     ncldmas = ncldmas + 1
1128     ndtrain = ndtrain + 1
1129    
1130     ndtls = ndtls + 1
1131     ndqls = ndqls + 1
1132 molod 1.22
1133 molod 1.16 endif
1134     #endif
1135 molod 1.1
1136     RETURN
1137     END
1138 molod 1.16 SUBROUTINE RAS( NN, LNG, LENC, K, NLTOP, nlayr, DT
1139 molod 1.21 *, UOI, ntracedim, ntracer, POI, QOI, PRS, PRJ, rnd, ncrnd
1140     *, RAINS, CLN, CLF, cldmas, detrain
1141     *, cp,grav,rkappa,alhl,rhfrac,rasmax )
1142 molod 1.1 C
1143     C*********************************************************************
1144     C********************* SUBROUTINE RAS *****************************
1145     C********************** 16 MARCH 1988 ******************************
1146     C*********************************************************************
1147     C
1148 molod 1.8 implicit none
1149    
1150 molod 1.9 C Argument List
1151 molod 1.16 integer nn,lng,lenc,k,nltop,nlayr
1152 molod 1.21 integer ntracedim, ntracer
1153 molod 1.9 integer ncrnd
1154 molod 1.13 _RL dt
1155 molod 1.21 _RL UOI(lng,nlayr,ntracedim), POI(lng,K)
1156 molod 1.16 _RL QOI(lng,K), PRS(lng,K+1), PRJ(lng,K+1)
1157 molod 1.13 _RL rnd(ncrnd)
1158 molod 1.16 _RL RAINS(lng,K), CLN(lng,K), CLF(lng,K)
1159     _RL cldmas(lng,K), detrain(lng,K)
1160     _RL cp,grav,rkappa,alhl,rhfrac(lng),rasmax
1161 molod 1.9
1162     C Local Variables
1163 molod 1.16 _RL TCU(lng,K), QCU(lng,K)
1164 molod 1.21 _RL ucu(lng,K,ntracedim)
1165 molod 1.16 _RL ALF(lng,K), BET(lng,K), GAM(lng,K)
1166     *, ETA(lng,K), HOI(lng,K)
1167     *, PRH(lng,K), PRI(lng,K)
1168     _RL HST(lng,K), QOL(lng,K), GMH(lng,K)
1169    
1170     _RL TX1(lng), TX2(lng), TX3(lng), TX4(lng), TX5(lng)
1171     *, TX6(lng), TX7(lng), TX8(lng), TX9(lng)
1172 molod 1.21 *, TX11(lng), TX12(lng), TX13(lng), TX14(lng,ntracedim)
1173 molod 1.16 *, TX15(lng)
1174     *, WFN(lng)
1175     integer IA1(lng), IA2(lng), IA3(lng)
1176     _RL cloudn(lng), pcu(lng)
1177 molod 1.1
1178 molod 1.8 integer krmin,icm
1179 molod 1.13 _RL rknob, cmb2pa
1180 molod 1.8 PARAMETER (KRMIN=01)
1181     PARAMETER (ICM=1000)
1182     PARAMETER (CMB2PA=100.0)
1183     PARAMETER (rknob = 10.)
1184 molod 1.9
1185     integer IC(ICM), IRND(icm)
1186 molod 1.16 _RL cmass(lng,K)
1187 molod 1.9 LOGICAL SETRAS
1188 molod 1.24 integer ifound
1189     _RL temp
1190     _RL thbef(lng,K)
1191 molod 1.9
1192     integer i,L,nc,ib,nt
1193 molod 1.8 integer km1,kp1,kprv,kcr,kfx,ncmx
1194 molod 1.13 _RL p00, crtmsf, frac, rasblf
1195 molod 1.8
1196     do L = 1,k
1197     do I = 1,LENC
1198     rains(i,l) = 0.
1199     enddo
1200     enddo
1201 molod 1.1
1202     p00 = 1000.
1203     crtmsf = 0.
1204    
1205     C The numerator here is the fraction of the subcloud layer mass flux
1206     C allowed to entrain into the cloud
1207    
1208     CCC FRAC = 1./dt
1209 molod 1.24 CCC FRAC = 0.5/dt
1210 molod 1.1 FRAC = 0.5/dt
1211    
1212     KM1 = K - 1
1213     KP1 = K + 1
1214     C we want the ras adjustment time scale to be one hour (indep of dt)
1215     RASBLF = 1./3600.
1216     C
1217     KPRV = KM1
1218     C Removed KRMAX parameter
1219     KCR = MIN(KM1,nlayr-2)
1220 molod 1.24 KFX = KM1 - KCR
1221 molod 1.1 NCMX = KFX + NCRND
1222     C
1223     IF (KFX .GT. 0) THEN
1224     DO NC=1,KFX
1225     IC(NC) = K - NC
1226     ENDDO
1227     ENDIF
1228     C
1229     IF (NCRND .GT. 0) THEN
1230     DO I=1,ncrnd
1231     IRND(I) = (RND(I)-0.0005)*(KCR-KRMIN+1)
1232     IRND(I) = IRND(I) + KRMIN
1233     ENDDO
1234     C
1235     DO NC=1,NCRND
1236     IC(KFX+NC) = IRND(NC)
1237     ENDDO
1238     ENDIF
1239     C
1240     DO 100 NC=1,NCMX
1241     C
1242     IF (NC .EQ. 1 ) THEN
1243     SETRAS = .TRUE.
1244     ELSE
1245     SETRAS = .FALSE.
1246     ENDIF
1247     IB = IC(NC)
1248 molod 1.16
1249 molod 1.1 c Initialize Cloud Fraction Array
1250     c -------------------------------
1251     do i = 1,lenc
1252     cloudn(i) = 0.0
1253     enddo
1254    
1255 molod 1.16 CALL CLOUD(nn,lng, LENC, K, NLTOP, nlayr, IB, RASBLF,SETRAS,FRAC
1256 molod 1.1 *, CP, ALHL, RKAPPA, GRAV, P00, CRTMSF
1257 molod 1.21 *, POI, QOI, UOI, ntracedim, Ntracer, PRS, PRJ
1258 molod 1.1 *, PCU, CLOUDN, TCU, QCU, UCU, CMASS
1259     *, ALF, BET, GAM, PRH, PRI, HOI, ETA
1260     *, HST, QOL, GMH
1261     *, TX1, TX2, TX3, TX4, TX5, TX6, TX7, TX8, TX9
1262     *, WFN, TX11, TX12, TX13, TX14, TX15
1263     *, IA1,IA2,IA3,rhfrac)
1264    
1265     C Compute fraction of grid box into which rain re-evap occurs (clf)
1266     c -----------------------------------------------------------------
1267     do i = 1,lenc
1268    
1269     c mass in detrainment layer
1270     c -------------------------
1271     tx1(i) = cmb2pa * (prs(i,ib+1) - prs(i,ib))/(grav*dt)
1272    
1273     c ratio of detraining cloud mass to mass in detrainment layer
1274     c -----------------------------------------------------------
1275     tx1(i) = rhfrac(i)*rknob * cmass(i,ib) / tx1(i)
1276     if(cmass(i,K).gt.0.) clf(i,ib) = clf(i,ib) + tx1(i)
1277     if( clf(i,ib).gt.1.) clf(i,ib) = 1.
1278     enddo
1279    
1280     c Compute Total Cloud Mass Flux
1281     c *****************************
1282     do L=ib,k
1283     do i=1,lenc
1284     cmass(i,L) = rhfrac(i)*cmass(i,L) * dt
1285     enddo
1286     enddo
1287    
1288     do L=ib,k
1289     do i=1,lenc
1290     cldmas(i,L) = cldmas(i,L) + cmass(i,L)
1291     enddo
1292     enddo
1293    
1294     do i=1,lenc
1295     detrain(i,ib) = detrain(i,ib) + cmass(i,ib)
1296     enddo
1297    
1298     DO L=IB,K
1299     DO I=1,LENC
1300 molod 1.24 thbef(I,L) = POI(I,L)
1301 molod 1.1 POI(I,L) = POI(I,L) + TCU(I,L) * DT * rhfrac(i)
1302     QOI(I,L) = QOI(I,L) + QCU(I,L) * DT * rhfrac(i)
1303     ENDDO
1304     ENDDO
1305 molod 1.21 DO NT=1,Ntracer
1306     DO L=IB,K
1307     DO I=1,LENC
1308     UOI(I,L+nltop-1,NT)=UOI(I,L+nltop-1,NT)+UCU(I,L,NT)*DT*rhfrac(i)
1309     ENDDO
1310     ENDDO
1311     ENDDO
1312 molod 1.1 DO I=1,LENC
1313     rains(I,ib) = rains(I,ib) + PCU(I)*dt * rhfrac(i)
1314     ENDDO
1315    
1316 molod 1.24 do i = 1,lenc
1317     ifound = 0
1318     do L = 1,k
1319     if(tcu(i,L).ne.0.)ifound = ifound + 1
1320     enddo
1321     if(ifound.ne.0) then
1322     c print *,i,' made a cloud detraining at ',ib
1323     do L = 1,k
1324     temp = TCU(I,L) * DT * rhfrac(i)
1325     c write(6,122)L,thbef(i,L),poi(i,L),temp
1326     enddo
1327     endif
1328     enddo
1329    
1330 molod 1.1 100 CONTINUE
1331 molod 1.24
1332     122 format(' ',i3,' TH B ',e10.3,' TH A ',e10.3,' DTH ',e10.3)
1333 molod 1.1
1334     c Fill Convective Cloud Fractions based on 3-D Rain Amounts
1335     c ---------------------------------------------------------
1336     do L=k-1,1,-1
1337     do i=1,lenc
1338     tx1(i) = 100*(prs(i,L+1)-prs(i,L))/grav
1339     cln(i,L) = min(1600*rains(i,L)/tx1(i),rasmax )
1340     enddo
1341     enddo
1342    
1343     RETURN
1344     END
1345     subroutine rndcloud (iras,nrnd,rnd,myid)
1346     implicit none
1347     integer n,iras,nrnd,myid
1348 molod 1.13 _RL random_numbx
1349 jmc 1.29 c _RL rnd(nrnd)
1350     _RL rnd(*)
1351 molod 1.1 integer irm
1352     parameter (irm = 1000)
1353 molod 1.13 _RL random(irm)
1354 jmc 1.29 integer i,mcheck,iseed,indx
1355 molod 1.1 logical first
1356     data first /.true./
1357     integer iras0
1358     data iras0 /0/
1359     save random, iras0
1360    
1361 jmc 1.29 if(nrnd.eq.0)then
1362 molod 1.1 do i = 1,nrnd
1363     rnd(i) = 0
1364     enddo
1365 molod 1.15 if(first .and. myid.eq.1) print *,' NO RANDOM CLOUDS IN RAS '
1366 molod 1.1 go to 100
1367     endif
1368    
1369     mcheck = mod(iras-1,irm/nrnd)
1370    
1371 jmc 1.29 c print *,' RNDCLOUD: first ',first,' iras ',iras,' iras0 ',iras0
1372     c print *,' RNDCLOUD: irm,nrnd,mcheck=',irm,nrnd,mcheck
1373    
1374     if ( iras.eq.iras0 ) then
1375     C- Not the 1rst tile: we are all set (already done for the 1rst tile):
1376     c -----------------------------------------------------------------------
1377     indx = (iras-1)*nrnd
1378    
1379 molod 1.1 c First Time In From a Continuing RESTART (IRAS.GT.1) or Reading a New RESTART
1380 jmc 1.29 c -- or --
1381     c Multiple Time In But have Used Up all 1000 numbers (MCHECK.EQ.0)
1382 molod 1.1 c ----------------------------------------------------------------------------
1383 jmc 1.29 elseif ( first.and.(iras.gt.1) .or. mcheck.eq.0 ) then
1384     iseed = (iras-1-mcheck)*nrnd
1385 molod 1.1 call random_seedx(iseed)
1386     do i = 1,irm
1387 molod 1.12 random(i) = random_numbx(iseed)
1388 molod 1.1 enddo
1389 molod 1.16 indx = (iras-1)*nrnd
1390 molod 1.1
1391 jmc 1.29 if( myid.eq.1 ) print *, 'Creating Rand Numb Array in RNDCLOUD'
1392     & ,', iseed=', iseed
1393     if( myid.eq.1 ) print *, 'IRAS: ',iras,' IRAS0: ',iras0,
1394     & ' indx: ', mod(indx,irm)
1395 molod 1.1
1396     c Multiple Time In But have NOT Used Up all 1000 numbers (MCHECK.NE.0)
1397     c --------------------------------------------------------------------
1398     else
1399 molod 1.16 indx = (iras-1)*nrnd
1400 molod 1.1 endif
1401    
1402 molod 1.16 indx = mod(indx,irm)
1403 jmc 1.29 if( indx+nrnd.gt.irm ) then
1404     c if( myid.eq.1 .AND. iras.ne.iras0 ) print *,
1405     c & 'reach end of Rand Numb Array in RNDCLOUD',indx,irm-nrnd
1406     indx=irm-nrnd
1407     endif
1408    
1409 molod 1.1 do n = 1,nrnd
1410 molod 1.16 rnd(n) = random(indx+n)
1411 molod 1.1 enddo
1412    
1413     100 continue
1414     first = .false.
1415     iras0 = iras
1416 jmc 1.29
1417 molod 1.1 return
1418     end
1419 molod 1.12 function random_numbx(iseed)
1420 molod 1.1 implicit none
1421 molod 1.12 integer iseed
1422     real *8 seed,port_rand
1423 molod 1.13 _RL random_numbx
1424 molod 1.10 #ifdef CRAY
1425 molod 1.13 _RL ranf
1426 molod 1.1 random_numbx = ranf()
1427 molod 1.12 #else
1428 molod 1.10 #ifdef SGI
1429 molod 1.13 _RL rand
1430 molod 1.1 random_numbx = rand()
1431 jmc 1.26 #else
1432 jmc 1.27 seed = -1.d0
1433 jmc 1.26 random_numbx = port_rand(seed)
1434 molod 1.1 #endif
1435 molod 1.12 #endif
1436 molod 1.1 return
1437     end
1438     subroutine random_seedx (iseed)
1439     implicit none
1440     integer iseed
1441 molod 1.28 real *8 port_rand
1442 molod 1.10 #ifdef CRAY
1443 molod 1.1 call ranset (iseed)
1444 jmc 1.27 #else
1445 molod 1.10 #ifdef SGI
1446 molod 1.1 integer*4 seed
1447     seed = iseed
1448     call srand (seed)
1449 jmc 1.27 #else
1450     real*8 tmpRdN
1451     real*8 seed
1452     seed = iseed
1453     tmpRdN = port_rand(seed)
1454     #endif
1455 molod 1.1 #endif
1456     return
1457     end
1458 molod 1.16 SUBROUTINE CLOUD(nn,lng, LENC, K, NLTOP, nlayr, IC, RASALF
1459 molod 1.1 *, SETRAS, FRAC
1460     *, CP, ALHL, RKAP, GRAV, P00, CRTMSF
1461 molod 1.21 *, POI, QOI, UOI, ntracedim, Ntracer, PRS, PRJ
1462 molod 1.1 *, PCU, CLN, TCU, QCU, UCU, CMASS
1463     *, ALF, BET, GAM, PRH, PRI, HOL, ETA
1464     *, HST, QOL, GMH
1465     *, TX1, TX2, TX3, TX4, TX5, TX6, TX7, TX8, ALM
1466     *, WFN, AKM, QS1, CLF, UHT, WLQ
1467     *, IA, I1, I2,rhfrac)
1468     C
1469     C*********************************************************************
1470     C******************** Relaxed Arakawa-Schubert ***********************
1471     C********************* Plug Compatible Version **********************
1472     C************************ SUBROUTINE CLOUD ***************************
1473     C************************* 23 JULY 1992 ***************************
1474     C*********************************************************************
1475     C*********************************************************************
1476     C*********************************************************************
1477     C************************** Developed By *****************************
1478     C************************** *****************************
1479     C************************ Shrinivas Moorthi **************************
1480     C************************ and **************************
1481     C************************ Max J. Suarez *****************************
1482     C************************ *****************************
1483     C******************** Laboratory for Atmospheres *********************
1484     C****************** NASA/GSFC, Greenbelt, MD 20771 *******************
1485     C*********************************************************************
1486     C*********************************************************************
1487     C
1488     C The calculations of Moorthi and Suarez (1992, MWR) are
1489     C contained in the CLOUD routine.
1490     C It is probably advisable, at least initially, to treat CLOUD
1491     C as a black box that computes the single cloud adjustments. RAS,
1492     C on the other hand, can be tailored to each GCMs configuration
1493     C (ie, number and placement of levels, nature of boundary layer,
1494     C time step and frequency with which RAS is called).
1495     C
1496     C
1497     C Input:
1498     C ------
1499     C
1500 molod 1.16 C lng : The inner dimension of update and input arrays.
1501 molod 1.1 C
1502     C LENC : The run: the number of soundings processes in a single call.
1503 molod 1.16 C RAS works on the first LENC of the lng soundings
1504 molod 1.1 C passed. This allows working on pieces of the world
1505     C say for multitasking, without declaring temporary arrays
1506     C and copying the data to and from them. This is an f77
1507     C version. An F90 version would have to allow more
1508     C flexibility in the argument declarations. Obviously
1509 molod 1.16 C (LENC<=lng).
1510 molod 1.1 C
1511     C K : Number of vertical layers (increasing downwards).
1512     C Need not be the same as the number of layers in the
1513     C GCM, since it is the outer dimension. The bottom layer
1514     C (K) is the subcloud layer.
1515     C
1516     C IC : Detrainment level to check for presence of convection
1517     C
1518     C RASALF : Relaxation parameter (< 1.) for present cloud-type
1519     C
1520     C SETRAS : Logical parameter to control re-calculation of
1521     C saturation specific humidity and mid level P**kappa
1522     C
1523     C FRAC : Fraction of the PBL (layer K) mass allowed to be used
1524     C by a cloud-type in time DT
1525     C
1526     C CP : Specific heat at constant pressure
1527     C
1528     C ALHL : Latent Heat of condensation
1529     C
1530     C RKAP : R/Cp, where R is the gas constant
1531     C
1532     C GRAV : Acceleration due to gravity
1533     C
1534     C P00 : A reference pressure in hPa, useually 1000 hPa
1535     C
1536     C CRTMSF : Critical value of mass flux above which cloudiness at
1537     C the detrainment layer of that cloud-type is assumed.
1538     C Affects only cloudiness calculation.
1539     C
1540 molod 1.16 C POI : 2D array of dimension (lng,K) containing potential
1541 molod 1.1 C temperature. Updated but not initialized by RAS.
1542     C
1543 molod 1.16 C QOI : 2D array of dimension (lng,K) containing specific
1544 molod 1.1 C humidity. Updated but not initialized by RAS.
1545     C
1546 molod 1.16 C UOI : 3D array of dimension (lng,K,NTRACER) containing tracers
1547 molod 1.1 C Updated but not initialized by RAS.
1548     C
1549 molod 1.16 C PRS : 2D array of dimension (lng,K+1) containing pressure
1550 molod 1.1 C in hPa at the interfaces of K-layers from top of the
1551     C atmosphere to the bottom. Not modified.
1552     C
1553 molod 1.16 C PRJ : 2D array of dimension (lng,K+1) containing (PRS/P00) **
1554 molod 1.1 C RKAP. i.e. Exner function at layer edges. Not modified.
1555     C
1556 molod 1.16 C rhfrac : 1D array of dimension (lng) containing a rel.hum. scaling
1557 molod 1.1 C fraction. Not modified.
1558     C
1559     C Output:
1560     C -------
1561     C
1562 molod 1.16 C PCU : 1D array of length lng containing accumulated
1563 molod 1.1 C precipitation in mm/sec.
1564     C
1565 molod 1.16 C CLN : 2D array of dimension (lng,K) containing cloudiness
1566 molod 1.1 C Note: CLN is bumped but NOT initialized
1567     C
1568 molod 1.16 C TCU : 2D array of dimension (lng,K) containing accumulated
1569 molod 1.1 C convective heating (K/sec).
1570     C
1571 molod 1.16 C QCU : 2D array of dimension (lng,K) containing accumulated
1572 molod 1.1 C convective drying (kg/kg/sec).
1573     C
1574 molod 1.16 C CMASS : 2D array of dimension (lng,K) containing the
1575 molod 1.1 C cloud mass flux (kg/sec). Filled from cloud top
1576     C to base.
1577     C
1578     C Temporaries:
1579     C
1580     C ALF, BET, GAM, ETA, PRH, PRI, HOI, HST, QOL, GMH are temporary
1581     C 2D real arrays of dimension of at least (LENC,K) where LENC is
1582     C the horizontal dimension over which convection is invoked.
1583     C
1584     C
1585     C TX1, TX2, TX3, TX4, TX5, TX6, TX7, TX8, TX9, AKM, QS1, CLF, UHT
1586     C VHT, WLQ WFN are temporary real arrays of length at least LENC
1587     C
1588     C IA, I1, and I2 are temporary integer arrays of length LENC
1589     C
1590     C
1591     C************************************************************************
1592 molod 1.9 implicit none
1593     C Argument List declarations
1594 molod 1.21 integer nn,lng,LENC,K,NLTOP,nlayr,ic,ntracedim, ntracer
1595 molod 1.13 _RL rasalf
1596 molod 1.9 LOGICAL SETRAS
1597 molod 1.13 _RL frac, cp, alhl, rkap, grav, p00, crtmsf
1598 molod 1.16 _RL POI(lng,K),QOI(lng,K),PRS(lng,K+1),PRJ(lng,K+1)
1599 molod 1.21 _RL uoi(lng,nlayr,ntracedim)
1600 molod 1.16 _RL PCU(LENC), CLN(lng)
1601 molod 1.23 _RL TCU(lng,K),QCU(lng,K),ucu(lng,k,ntracedim),CMASS(lng,K)
1602 molod 1.16 _RL ALF(lng,K), BET(lng,K), GAM(lng,K), PRH(lng,K), PRI(lng,K)
1603 molod 1.13 _RL HOL(LENC,K), ETA(LENC,K), HST(LENC,K), QOL(LENC,K)
1604     _RL GMH(LENC,K)
1605     _RL TX1(LENC), TX2(LENC), TX3(LENC), TX4(LENC)
1606     _RL TX5(LENC), TX6(LENC), TX7(LENC), TX8(LENC)
1607     _RL ALM(LENC), WFN(LENC), AKM(LENC), QS1(LENC)
1608     _RL WLQ(LENC), CLF(LENC)
1609 molod 1.21 _RL uht(lng,ntracedim)
1610 molod 1.9 integer IA(LENC), I1(LENC),I2(LENC)
1611 molod 1.16 _RL rhfrac(lng)
1612 molod 1.1
1613 molod 1.9 C Local Variables
1614 molod 1.13 _RL daylen,half,one,zero,cmb2pa,rhmax
1615 molod 1.1 PARAMETER (DAYLEN=86400.0, HALF=0.5, ONE=1.0, ZERO=0.0)
1616     PARAMETER (CMB2PA=100.0)
1617     PARAMETER (RHMAX=0.9999)
1618 molod 1.13 _RL rkapp1,onebcp,albcp,onebg,cpbg,twobal
1619 molod 1.1 C
1620 molod 1.9 integer nt,km1,ic1,i,L,len1,len2,isav,len11,ii
1621 molod 1.16 integer lena,lena1,lenb
1622     _RL tem,tem1
1623 molod 1.1
1624     c Explicit Inline Directives
1625     c --------------------------
1626 molod 1.10 #ifdef CRAY
1627     #ifdef f77
1628 molod 1.1 cfpp$ expand (qsat)
1629     #endif
1630     #endif
1631    
1632     RKAPP1 = 1.0 + RKAP
1633     ONEBCP = 1.0 / CP
1634     ALBCP = ALHL * ONEBCP
1635     ONEBG = 1.0 / GRAV
1636     CPBG = CP * ONEBG
1637     TWOBAL = 2.0 / ALHL
1638 molod 1.21
1639 molod 1.1 C
1640     KM1 = K - 1
1641     IC1 = IC + 1
1642     C
1643 molod 1.9 C SETTING ALF, BET, GAM, PRH, AND PRI : DONE ONLY WHEN SETRAS=.T.
1644 molod 1.1 C
1645    
1646     IF (SETRAS) THEN
1647    
1648     DO 2050 L=1,K
1649     DO 2030 I=1,LENC
1650     PRH(I,L) = (PRJ(I,L+1)*PRS(I,L+1) - PRJ(I,L)*PRS(I,L))
1651     * / ((PRS(I,L+1)-PRS(I,L)) * RKAPP1)
1652     2030 CONTINUE
1653     2050 CONTINUE
1654    
1655     DO 2070 L=1,K
1656     DO 2060 I=1,LENC
1657     TX5(I) = POI(I,L) * PRH(I,L)
1658     TX1(I) = (PRS(I,L) + PRS(I,L+1)) * 0.5
1659     TX3(I) = TX5(I)
1660     CALL QSAT(TX3(I), TX1(I), TX2(I), TX4(I), .TRUE.)
1661     ALF(I,L) = TX2(I) - TX4(I) * TX5(I)
1662     BET(I,L) = TX4(I) * PRH(I,L)
1663     GAM(I,L) = 1.0 / ((1.0 + TX4(I)*ALBCP) * PRH(I,L))
1664     PRI(I,L) = (CP/CMB2PA) / (PRS(I,L+1) - PRS(I,L))
1665     2060 CONTINUE
1666     2070 CONTINUE
1667    
1668     ENDIF
1669     C
1670     C
1671     DO 10 L=1,K
1672 molod 1.16 DO 10 I=1,lng
1673 molod 1.1 TCU(I,L) = 0.0
1674     QCU(I,L) = 0.0
1675     CMASS(I,L) = 0.0
1676     10 CONTINUE
1677    
1678 molod 1.21 do nt = 1,ntracer
1679     do L=1,K
1680     do I=1,LENC
1681     ucu(I,L,nt) = 0.0
1682     enddo
1683     enddo
1684     enddo
1685 molod 1.1 C
1686     DO 30 I=1,LENC
1687     TX1(I) = PRJ(I,K+1) * POI(I,K)
1688     QS1(I) = ALF(I,K) + BET(I,K)*POI(I,K)
1689     QOL(I,K) = MIN(QS1(I)*RHMAX,QOI(I,K))
1690    
1691     HOL(I,K) = TX1(I)*CP + QOL(I,K)*ALHL
1692     ETA(I,K) = ZERO
1693     TX2(I) = (PRJ(I,K+1) - PRJ(I,K)) * POI(I,K) * CP
1694     30 CONTINUE
1695     C
1696     IF (IC .LT. KM1) THEN
1697     DO 3703 L=KM1,IC1,-1
1698     DO 50 I=1,LENC
1699     QS1(I) = ALF(I,L) + BET(I,L)*POI(I,L)
1700     QOL(I,L) = MIN(QS1(I)*RHMAX,QOI(I,L))
1701     C
1702     TEM1 = TX2(I) + PRJ(I,L+1) * POI(I,L) * CP
1703     HOL(I,L) = TEM1 + QOL(I,L )* ALHL
1704     HST(I,L) = TEM1 + QS1(I) * ALHL
1705    
1706     TX1(I) = (PRJ(I,L+1) - PRJ(I,L)) * POI(I,L)
1707     ETA(I,L) = ETA(I,L+1) + TX1(I)*CPBG
1708     TX2(I) = TX2(I) + TX1(I)*CP
1709     50 CONTINUE
1710     C
1711     3703 CONTINUE
1712     ENDIF
1713    
1714    
1715     DO 70 I=1,LENC
1716     HOL(I,IC) = TX2(I)
1717     QS1(I) = ALF(I,IC) + BET(I,IC)*POI(I,IC)
1718     QOL(I,IC) = MIN(QS1(I)*RHMAX,QOI(I,IC))
1719     c
1720     TEM1 = TX2(I) + PRJ(I,IC1) * POI(I,IC) * CP
1721     HOL(I,IC) = TEM1 + QOL(I,IC) * ALHL
1722     HST(I,IC) = TEM1 + QS1(I) * ALHL
1723     C
1724     TX3(I ) = (PRJ(I,IC1) - PRH(I,IC)) * POI(I,IC)
1725     ETA(I,IC) = ETA(I,IC1) + CPBG * TX3(I)
1726     70 CONTINUE
1727     C
1728     DO 130 I=1,LENC
1729     TX2(I) = HOL(I,K) - HST(I,IC)
1730     TX1(I) = ZERO
1731    
1732     130 CONTINUE
1733     C
1734     C ENTRAINMENT PARAMETER
1735     C
1736     DO 160 L=IC,KM1
1737     DO 160 I=1,LENC
1738     TX1(I) = TX1(I) + (HST(I,IC) - HOL(I,L)) * (ETA(I,L) - ETA(I,L+1))
1739     160 CONTINUE
1740     C
1741     LEN1 = 0
1742     LEN2 = 0
1743     ISAV = 0
1744     DO 195 I=1,LENC
1745     IF (TX1(I) .GT. ZERO .AND. TX2(I) .GT. ZERO
1746     . .AND. rhfrac(i).ne.0.0 ) THEN
1747     LEN1 = LEN1 + 1
1748     IA(LEN1) = I
1749     ALM(LEN1) = TX2(I) / TX1(I)
1750     ENDIF
1751     195 CONTINUE
1752     C
1753     LEN2 = LEN1
1754     if (IC1 .lt. K) then
1755     DO 196 I=1,LENC
1756     IF (TX2(I) .LE. 0.0 .AND. (HOL(I,K) .GT. HST(I,IC1))
1757     . .AND. rhfrac(i).ne.0.0 ) THEN
1758     LEN2 = LEN2 + 1
1759     IA(LEN2) = I
1760     ALM(LEN2) = 0.0
1761     ENDIF
1762     196 CONTINUE
1763     endif
1764     C
1765     IF (LEN2 .EQ. 0) THEN
1766     DO 5010 I=1,LENC*K
1767     HST(I,1) = 0.0
1768     QOL(I,1) = 0.0
1769     5010 CONTINUE
1770     DO 5020 I=1,LENC
1771     PCU(I) = 0.0
1772     5020 CONTINUE
1773     RETURN
1774     ENDIF
1775     LEN11 = LEN1 + 1
1776     C
1777     C NORMALIZED MASSFLUX
1778     C
1779     DO 250 I=1,LEN2
1780     ETA(I,K) = 1.0
1781     II = IA(I)
1782     TX2(I) = 0.5 * (PRS(II,IC) + PRS(II,IC1))
1783     TX4(I) = PRS(II,K)
1784     250 CONTINUE
1785     C
1786     DO 252 I=LEN11,LEN2
1787     WFN(I) = 0.0
1788     II = IA(I)
1789     IF (HST(II,IC1) .LT. HST(II,IC)) THEN
1790     TX6(I) = (HST(II,IC1)-HOL(II,K))/(HST(II,IC1)-HST(II,IC))
1791     ELSE
1792     TX6(I) = 0.0
1793     ENDIF
1794     TX2(I) = 0.5 * (PRS(II,IC1)+PRS(II,IC1+1)) * (1.0-TX6(I))
1795     * + TX2(I) * TX6(I)
1796     252 CONTINUE
1797     C
1798     CALL ACRITN(LEN2, TX2, TX4, TX3)
1799     C
1800     DO 260 L=KM1,IC,-1
1801     DO 255 I=1,LEN2
1802     TX1(I) = ETA(IA(I),L)
1803     255 CONTINUE
1804     DO 260 I=1,LEN2
1805     ETA(I,L) = 1.0 + ALM(I) * TX1(I)
1806     260 CONTINUE
1807     C
1808     C CLOUD WORKFUNCTION
1809     C
1810     IF (LEN1 .GT. 0) THEN
1811     DO 270 I=1,LEN1
1812     II = IA(I)
1813     WFN(I) = - GAM(II,IC) * (PRJ(II,IC1) - PRH(II,IC))
1814     * * HST(II,IC) * ETA(I,IC1)
1815     270 CONTINUE
1816     ENDIF
1817     C
1818     DO 290 I=1,LEN2
1819     II = IA(I)
1820     TX1(I) = HOL(II,K)
1821     290 CONTINUE
1822     C
1823     IF (IC1 .LE. KM1) THEN
1824    
1825     DO 380 L=KM1,IC1,-1
1826     DO 380 I=1,LEN2
1827     II = IA(I)
1828     TEM = TX1(I) + (ETA(I,L) - ETA(I,L+1)) * HOL(II,L)
1829     C
1830     PCU(I) = PRJ(II,L+1) - PRH(II,L)
1831     TEM1 = ETA(I,L+1) * PCU(I)
1832     TX1(I) = TX1(I)*PCU(I)
1833     C
1834     PCU(I) = PRH(II,L) - PRJ(II,L)
1835     TEM1 = (TEM1 + ETA(I,L) * PCU(I)) * HST(II,L)
1836     TX1(I) = TX1(I) + TEM*PCU(I)
1837     C
1838     WFN(I) = WFN(I) + (TX1(I) - TEM1) * GAM(II,L)
1839     TX1(I) = TEM
1840     380 CONTINUE
1841     ENDIF
1842     C
1843     LENA = 0
1844     IF (LEN1 .GT. 0) THEN
1845     DO 512 I=1,LEN1
1846     II = IA(I)
1847     WFN(I) = WFN(I) + TX1(I) * GAM(II,IC)*(PRJ(II,IC1)-PRH(II,IC))
1848     * - TX3(I)
1849     IF (WFN(I) .GT. 0.0) THEN
1850     LENA = LENA + 1
1851     I1(LENA) = IA(I)
1852     I2(LENA) = I
1853     TX1(LENA) = WFN(I)
1854     TX2(LENA) = QS1(IA(I))
1855     TX6(LENA) = 1.0
1856     ENDIF
1857     512 CONTINUE
1858     ENDIF
1859     LENB = LENA
1860     DO 515 I=LEN11,LEN2
1861     WFN(I) = WFN(I) - TX3(I)
1862     IF (WFN(I) .GT. 0.0 .AND. TX6(I) .GT. 0.0) THEN
1863     LENB = LENB + 1
1864     I1(LENB) = IA(I)
1865     I2(LENB) = I
1866     TX1(LENB) = WFN(I)
1867     TX2(LENB) = QS1(IA(I))
1868     TX4(LENB) = TX6(I)
1869     ENDIF
1870     515 CONTINUE
1871     C
1872     IF (LENB .LE. 0) THEN
1873     DO 5030 I=1,LENC*K
1874     HST(I,1) = 0.0
1875     QOL(I,1) = 0.0
1876     5030 CONTINUE
1877     DO 5040 I=1,LENC
1878     PCU(I) = 0.0
1879     5040 CONTINUE
1880     RETURN
1881     ENDIF
1882    
1883     C
1884     DO 516 I=1,LENB
1885     WFN(I) = TX1(I)
1886     QS1(I) = TX2(I)
1887     516 CONTINUE
1888     C
1889     DO 520 L=IC,K
1890     DO 517 I=1,LENB
1891     TX1(I) = ETA(I2(I),L)
1892     517 CONTINUE
1893     DO 520 I=1,LENB
1894     ETA(I,L) = TX1(I)
1895     520 CONTINUE
1896     C
1897     LENA1 = LENA + 1
1898     C
1899     DO 510 I=1,LENA
1900     II = I1(I)
1901     TX8(I) = HST(II,IC) - HOL(II,IC)
1902     510 CONTINUE
1903     DO 530 I=LENA1,LENB
1904     II = I1(I)
1905     TX6(I) = TX4(I)
1906     TEM = TX6(I) * (HOL(II,IC)-HOL(II,IC1)) + HOL(II,IC1)
1907     TX8(I) = HOL(II,K) - TEM
1908    
1909     TEM1 = TX6(I) * (QOL(II,IC)-QOL(II,IC1)) + QOL(II,IC1)
1910     TX5(I) = TEM - TEM1 * ALHL
1911     QS1(I) = TEM1 + TX8(I)*(ONE/ALHL)
1912     TX3(I) = HOL(II,IC)
1913     530 CONTINUE
1914     C
1915     C
1916     DO 620 I=1,LENB
1917     II = I1(I)
1918     WLQ(I) = QOL(II,K) - QS1(I) * ETA(I,IC)
1919     TX7(I) = HOL(II,K)
1920     620 CONTINUE
1921 molod 1.21 DO NT=1,Ntracer
1922     DO 621 I=1,LENB
1923     II = I1(I)
1924     UHT(I,NT) = UOI(II,K+nltop-1,NT)-UOI(II,IC+nltop-1,NT) * ETA(I,IC)
1925     621 CONTINUE
1926     ENDDO
1927 molod 1.1 C
1928     DO 635 L=KM1,IC,-1
1929     DO 630 I=1,LENB
1930     II = I1(I)
1931     TEM = ETA(I,L) - ETA(I,L+1)
1932     WLQ(I) = WLQ(I) + TEM * QOL(II,L)
1933     630 CONTINUE
1934     635 CONTINUE
1935 molod 1.21 DO NT=1,Ntracer
1936     DO L=KM1,IC,-1
1937     DO I=1,LENB
1938     II = I1(I)
1939     TEM = ETA(I,L) - ETA(I,L+1)
1940     UHT(I,NT) = UHT(I,NT) + TEM * UOI(II,L+nltop-1,NT)
1941     ENDDO
1942     ENDDO
1943     ENDDO
1944 molod 1.1 C
1945     C CALCULATE GS AND PART OF AKM (THAT REQUIRES ETA)
1946     C
1947     DO 690 I=1,LENB
1948     II = I1(I)
1949     c TX7(I) = HOL(II,K)
1950     TEM = (POI(II,KM1) - POI(II,K)) / (PRH(II,K) - PRH(II,KM1))
1951     HOL(I,K) = TEM * (PRJ(II,K)-PRH(II,KM1))*PRH(II,K)*PRI(II,K)
1952     HOL(I,KM1) = TEM * (PRH(II,K)-PRJ(II,K))*PRH(II,KM1)*PRI(II,KM1)
1953     AKM(I) = ZERO
1954     TX2(I) = 0.5 * (PRS(II,IC) + PRS(II,IC1))
1955     690 CONTINUE
1956    
1957     IF (IC1 .LE. KM1) THEN
1958     DO 750 L=KM1,IC1,-1
1959     DO 750 I=1,LENB
1960     II = I1(I)
1961     TEM = (POI(II,L-1) - POI(II,L)) * ETA(I,L)
1962     * / (PRH(II,L) - PRH(II,L-1))
1963     C
1964     HOL(I,L) = TEM * (PRJ(II,L)-PRH(II,L-1)) * PRH(II,L)
1965     * * PRI(II,L) + HOL(I,L)
1966     HOL(I,L-1) = TEM * (PRH(II,L)-PRJ(II,L)) * PRH(II,L-1)
1967     * * PRI(II,L-1)
1968     C
1969     AKM(I) = AKM(I) - HOL(I,L)
1970     * * (ETA(I,L) * (PRH(II,L)-PRJ(II,L)) +
1971     * ETA(I,L+1) * (PRJ(II,L+1)-PRH(II,L))) / PRH(II,L)
1972     750 CONTINUE
1973     ENDIF
1974     C
1975     C
1976     CALL RNCL(LENB, TX2, TX1, CLF)
1977    
1978     DO 770 I=1,LENB
1979     TX2(I) = (ONE - TX1(I)) * WLQ(I)
1980     WLQ(I) = TX1(I) * WLQ(I)
1981     C
1982     TX1(I) = HOL(I,IC)
1983     770 CONTINUE
1984     DO 790 I=LENA1, LENB
1985     II = I1(I)
1986     TX1(I) = TX1(I) + (TX5(I)-TX3(I)+QOL(II,IC)*ALHL)*(PRI(II,IC)/CP)
1987     790 CONTINUE
1988    
1989     DO 800 I=1,LENB
1990     HOL(I,IC) = TX1(I) - TX2(I) * ALBCP * PRI(I1(I),IC)
1991     800 CONTINUE
1992    
1993     IF (LENA .GT. 0) THEN
1994     DO 810 I=1,LENA
1995     II = I1(I)
1996     AKM(I) = AKM(I) - ETA(I,IC1) * (PRJ(II,IC1) - PRH(II,IC))
1997     * * TX1(I) / PRH(II,IC)
1998     810 CONTINUE
1999     ENDIF
2000     c
2001     C CALCULATE GH
2002     C
2003     DO 830 I=1,LENB
2004     II = I1(I)
2005     TX3(I) = QOL(II,KM1) - QOL(II,K)
2006     GMH(I,K) = HOL(I,K) + TX3(I) * PRI(II,K) * (ALBCP)
2007    
2008     AKM(I) = AKM(I) + GAM(II,KM1)*(PRJ(II,K)-PRH(II,KM1))
2009     * * GMH(I,K)
2010     TX3(I) = zero
2011     830 CONTINUE
2012     C
2013     IF (IC1 .LE. KM1) THEN
2014     DO 840 L=KM1,IC1,-1
2015     DO 840 I=1,LENB
2016     II = I1(I)
2017     TX2(I) = TX3(I)
2018     TX3(I) = (QOL(II,L-1) - QOL(II,L)) * ETA(I,L)
2019     TX2(I) = TX2(I) + TX3(I)
2020     C
2021     GMH(I,L) = HOL(I,L) + TX2(I) * PRI(II,L) * (ALBCP*HALF)
2022     840 CONTINUE
2023     C
2024     C
2025     ENDIF
2026     DO 850 I=LENA1,LENB
2027     TX3(I) = TX3(I) + TWOBAL
2028     * * (TX7(I) - TX8(I) - TX5(I) - QOL(I1(I),IC)*ALHL)
2029     850 CONTINUE
2030     DO 860 I=1,LENB
2031     GMH(I,IC) = TX1(I) + PRI(I1(I),IC) * ONEBCP
2032     * * (TX3(I)*(ALHL*HALF) + ETA(I,IC) * TX8(I))
2033     860 CONTINUE
2034     C
2035     C CALCULATE HC PART OF AKM
2036     C
2037     IF (IC1 .LE. KM1) THEN
2038     DO 870 I=1,LENB
2039     TX1(I) = GMH(I,K)
2040     870 CONTINUE
2041     DO 3725 L=KM1,IC1,-1
2042     DO 880 I=1,LENB
2043     II = I1(I)
2044     TX1(I) = TX1(I) + (ETA(I,L) - ETA(I,L+1)) * GMH(I,L)
2045     TX2(I) = GAM(II,L-1) * (PRJ(II,L) - PRH(II,L-1))
2046     880 CONTINUE
2047     C
2048     IF (L .EQ. IC1) THEN
2049     DO 890 I=LENA1,LENB
2050     TX2(I) = ZERO
2051     890 CONTINUE
2052     ENDIF
2053     DO 900 I=1,LENB
2054     II = I1(I)
2055     AKM(I) = AKM(I) + TX1(I) *
2056     * (TX2(I) + GAM(II,L)*(PRH(II,L)-PRJ(II,L)))
2057     900 CONTINUE
2058     3725 CONTINUE
2059     ENDIF
2060     C
2061     DO 920 I=LENA1,LENB
2062     II = I1(I)
2063     TX2(I) = 0.5 * (PRS(II,IC) + PRS(II,IC1))
2064     * + 0.5*(PRS(II,IC+2) - PRS(II,IC)) * (ONE-TX6(I))
2065     c
2066     TX1(I) = PRS(II,IC1)
2067     TX5(I) = 0.5 * (PRS(II,IC1) + PRS(II,IC+2))
2068     C
2069     IF ((TX2(I) .GE. TX1(I)) .AND. (TX2(I) .LT. TX5(I))) THEN
2070     TX6(I) = ONE - (TX2(I) - TX1(I)) / (TX5(I) - TX1(I))
2071     C
2072     TEM = PRI(II,IC1) / PRI(II,IC)
2073     HOL(I,IC1) = HOL(I,IC1) + HOL(I,IC) * TEM
2074     HOL(I,IC) = ZERO
2075     C
2076     GMH(I,IC1) = GMH(I,IC1) + GMH(I,IC) * TEM
2077     GMH(I,IC) = ZERO
2078     ELSEIF (TX2(I) .LT. TX1(I)) THEN
2079     TX6(I) = 1.0
2080     ELSE
2081     TX6(I) = 0.0
2082     ENDIF
2083     920 CONTINUE
2084     C
2085     C
2086     DO I=1,LENC
2087     PCU(I) = 0.0
2088     ENDDO
2089    
2090     DO 970 I=1,LENB
2091     II = I1(I)
2092     IF (AKM(I) .LT. ZERO .AND. WLQ(I) .GE. 0.0) THEN
2093     WFN(I) = - TX6(I) * WFN(I) * RASALF / AKM(I)
2094     ELSE
2095     WFN(I) = ZERO
2096     ENDIF
2097     TEM = (PRS(II,K+1)-PRS(II,K))*(CMB2PA*FRAC)
2098     WFN(I) = MIN(WFN(I), TEM)
2099     C
2100     C compute cloud amount
2101     C
2102     CC TX1(I) = CLN(II)
2103     CC IF (WFN(I) .GT. CRTMSF) TX1(I) = TX1(I) + CLF(I)
2104     CC IF (TX1(I) .GT. ONE) TX1(I) = ONE
2105     C
2106     C PRECIPITATION
2107     C
2108     PCU(II) = WLQ(I) * WFN(I) * ONEBG
2109     C
2110     C CUMULUS FRICTION AT THE BOTTOM LAYER
2111     C
2112     TX4(I) = WFN(I) * (1.0/ALHL)
2113     TX5(I) = WFN(I) * ONEBCP
2114     970 CONTINUE
2115     C
2116     C compute cloud mass flux for diagnostic output
2117     C
2118     DO L = IC,K
2119     DO I=1,LENB
2120     II = I1(I)
2121     if(L.lt.K)then
2122     CMASS(II,L) = ETA(I,L+1) * WFN(I) * ONEBG
2123     else
2124     CMASS(II,L) = WFN(I) * ONEBG
2125     endif
2126     ENDDO
2127     ENDDO
2128     C
2129     CC DO 975 I=1,LENB
2130     CC II = I1(I)
2131     CC CLN(II) = TX1(I)
2132     CC975 CONTINUE
2133     C
2134     C THETA AND Q CHANGE DUE TO CLOUD TYPE IC
2135     C
2136    
2137     c TEMA = 0.0
2138     c TEMB = 0.0
2139     DO 990 L=IC,K
2140     DO 980 I=1,LENB
2141     II = I1(I)
2142     TEM = (GMH(I,L) - HOL(I,L)) * TX4(I)
2143     TEM1 = HOL(I,L) * TX5(I)
2144     C
2145     TCU(II,L) = TEM1 / PRH(II,L)
2146     QCU(II,L) = TEM
2147     980 CONTINUE
2148    
2149     c I = I1(IP1)
2150     c
2151     c TEM = (PRS(I,L+1)-PRS(I,L)) * (ONEBG*100.0)
2152     c TEMA = TEMA + TCU(I,L) * PRH(I,L) * TEM * (CP/ALHL)
2153     c TEMB = TEMB + QCU(I,L) * TEM
2154     C
2155     990 CONTINUE
2156     C
2157     c Compute Tracer Tendencies
2158     c -------------------------
2159 molod 1.21 do nt = 1,ntracer
2160 molod 1.18 c
2161 molod 1.1 c Tracer Tendency at the Bottom Layer
2162     c -----------------------------------
2163 molod 1.21 DO 995 I=1,LENB
2164     II = I1(I)
2165     TEM = half*TX5(I) * PRI(II,K)
2166     TX1(I) = ( UOI(II,KM1+nltop-1,nt) - UOI(II,K+nltop-1,nt))
2167     ucu(II,K,nt) = TEM * TX1(I)
2168     995 CONTINUE
2169 molod 1.18 c
2170 molod 1.1 c Tracer Tendency at all other Levels
2171     c -----------------------------------
2172 molod 1.21 DO 1020 L=KM1,IC1,-1
2173     DO 1010 I=1,LENB
2174     II = I1(I)
2175     TEM = half*TX5(I) * PRI(II,L)
2176     TEM1 = TX1(I)
2177     TX1(I) = (UOI(II,L-1+nltop-1,nt)-UOI(II,L+nltop-1,nt)) * ETA(I,L)
2178     TX3(I) = (TX1(I) + TEM1) * TEM
2179     1010 CONTINUE
2180     DO 1020 I=1,LENB
2181     II = I1(I)
2182     ucu(II,L,nt) = TX3(I)
2183     1020 CONTINUE
2184 molod 1.22
2185 molod 1.21 DO 1030 I=1,LENB
2186     II = I1(I)
2187     IF (TX6(I) .GE. 1.0) THEN
2188     TEM = half*TX5(I) * PRI(II,IC)
2189     ELSE
2190     TEM = 0.0
2191     ENDIF
2192     TX1(I) = (TX1(I) + UHT(I,nt) + UHT(I,nt)) * TEM
2193     1030 CONTINUE
2194     DO 1040 I=1,LENB
2195     II = I1(I)
2196     ucu(II,IC,nt) = TX1(I)
2197     1040 CONTINUE
2198    
2199     enddo
2200 molod 1.1 C
2201     C PENETRATIVE CONVECTION CALCULATION OVER
2202     C
2203    
2204     RETURN
2205     END
2206 molod 1.16 SUBROUTINE RNCL(lng, PL, RNO, CLF)
2207 molod 1.1 C
2208     C*********************************************************************
2209     C********************** Relaxed Arakawa-Schubert *********************
2210     C************************ SUBROUTINE RNCL ************************
2211     C**************************** 23 July 1992 ***************************
2212     C*********************************************************************
2213 molod 1.9 implicit none
2214     C Argument List declarations
2215 molod 1.16 integer lng
2216     _RL PL(lng), RNO(lng), CLF(lng)
2217 molod 1.1
2218 molod 1.9 C Local Variables
2219 molod 1.13 _RL p5,p8,pt8,pt2,pfac,p4,p6,p7,p9,cucld,cfac
2220 molod 1.1 PARAMETER (P5=500.0, P8=800.0, PT8=0.8, PT2=0.2)
2221     PARAMETER (PFAC=PT2/(P8-P5))
2222     PARAMETER (P4=400.0, P6=401.0)
2223     PARAMETER (P7=700.0, P9=900.0)
2224     PARAMETER (CUCLD=0.5,CFAC=CUCLD/(P6-P4))
2225 molod 1.9
2226     integer i
2227 molod 1.1 C
2228 molod 1.16 DO 10 I=1,lng
2229 molod 1.1 rno(i) = 1.0
2230     ccc if( pl(i).le.400.0 ) rno(i) = max( 0.75, 1.0-0.0025*(400.0-pl(i)) )
2231    
2232     ccc IF ( PL(I).GE.P7 .AND. PL(I).LE.P9 ) THEN
2233     ccc RNO(I) = ((P9-PL(I))/(P9-P7)) **2
2234     ccc ELSE IF (PL(I).GT.P9) THEN
2235     ccc RNO(I) = 0.
2236     ccc ENDIF
2237    
2238     CLF(I) = CUCLD
2239     C
2240     CARIESIF (PL(I) .GE. P5 .AND. PL(I) .LE. P8) THEN
2241     CARIES RNO(I) = (P8-PL(I))*PFAC + PT8
2242     CARIESELSEIF (PL(I) .GT. P8 ) THEN
2243     CARIES RNO(I) = PT8
2244     CARIESENDIF
2245     CARIES
2246     IF (PL(I) .GE. P4 .AND. PL(I) .LE. P6) THEN
2247     CLF(I) = (P6-PL(I))*CFAC
2248     ELSEIF (PL(I) .GT. P6 ) THEN
2249     CLF(I) = 0.0
2250     ENDIF
2251     10 CONTINUE
2252     C
2253     RETURN
2254     END
2255 molod 1.16 SUBROUTINE ACRITN ( lng,PL,PLB,ACR )
2256 molod 1.1
2257     C*********************************************************************
2258     C********************** Relaxed Arakawa-Schubert *********************
2259     C************************** SUBROUTINE ACRIT *********************
2260     C****************** modified August 28, 1996 L.Takacs ************
2261     C**** *****
2262     C**** Note: Data obtained from January Mean After-Analysis *****
2263     C**** from 4x5 46-layer GEOS Assimilation *****
2264     C**** *****
2265     C*********************************************************************
2266 molod 1.9 implicit none
2267     C Argument List declarations
2268 molod 1.16 integer lng
2269     _RL PL(lng), PLB(lng), ACR(lng)
2270 molod 1.1
2271 molod 1.9 C Local variables
2272     integer lma
2273 molod 1.1 parameter (lma=18)
2274 molod 1.13 _RL p(lma)
2275     _RL a(lma)
2276 molod 1.9 integer i,L
2277 molod 1.13 _RL temp
2278 molod 1.1
2279     data p / 93.81, 111.65, 133.46, 157.80, 186.51,
2280     . 219.88, 257.40, 301.21, 352.49, 409.76,
2281     . 471.59, 535.04, 603.33, 672.79, 741.12,
2282     . 812.52, 875.31, 930.20/
2283    
2284     data a / 3.35848, 3.13645, 2.48072, 2.08277, 1.53364,
2285     . 1.01971, .65846, .45867, .38687, .31002,
2286     . .25574, .20347, .17254, .15260, .16756,
2287     . .09916, .10360, .05880/
2288    
2289    
2290     do L=1,lma-1
2291 molod 1.16 do i=1,lng
2292 molod 1.1 if( pl(i).ge.p(L) .and.
2293     . pl(i).le.p(L+1)) then
2294     temp = ( pl(i)-p(L) )/( p(L+1)-p(L) )
2295     acr(i) = a(L+1)*temp + a(L)*(1-temp)
2296     endif
2297     enddo
2298     enddo
2299    
2300 molod 1.16 do i=1,lng
2301 molod 1.1 if( pl(i).lt.p(1) ) acr(i) = a(1)
2302     if( pl(i).gt.p(lma) ) acr(i) = a(lma)
2303     enddo
2304    
2305 molod 1.16 do i=1,lng
2306 molod 1.1 acr(i) = acr(i) * (plb(i)-pl(i))
2307     enddo
2308    
2309     RETURN
2310     END
2311 molod 1.6 SUBROUTINE RNEVP(NN,IRUN,NLAY,TL,QL,RAIN,PL,CLFRAC,SP,DP,PLKE,
2312 molod 1.1 1 PLK,TH,TEMP1,TEMP2,TEMP3,ITMP1,ITMP2,RCON,RLAR,CLSBTH,tmscl,
2313     2 tmfrc,cp,gravity,alhl,gamfac,cldlz,RHCRIT,offset,alpha)
2314    
2315 molod 1.9 implicit none
2316     C Argument List declarations
2317     integer nn,irun,nlay
2318 molod 1.13 _RL TL(IRUN,NLAY),QL(IRUN,NLAY),RAIN(IRUN,NLAY),
2319 molod 1.9 . PL(IRUN,NLAY),CLFRAC(IRUN,NLAY),SP(IRUN),TEMP1(IRUN,NLAY),
2320     . TEMP2(IRUN,NLAY),PLKE(IRUN,NLAY+1),
2321     . RCON(IRUN),RLAR(IRUN),DP(IRUN,NLAY),PLK(IRUN,NLAY),TH(IRUN,NLAY),
2322     . TEMP3(IRUN,NLAY)
2323     integer ITMP1(IRUN,NLAY),ITMP2(IRUN,NLAY)
2324 molod 1.13 _RL CLSBTH(IRUN,NLAY)
2325     _RL tmscl,tmfrc,cp,gravity,alhl,gamfac,offset,alpha
2326     _RL cldlz(irun,nlay)
2327     _RL rhcrit(irun,nlay)
2328 molod 1.9 C
2329     C Local Variables
2330 molod 1.13 _RL zm1p04,zero,two89,zp44,zp01,half,zp578,one,thousand,z3600
2331     _RL zp1,zp001
2332 molod 1.1 PARAMETER (ZM1P04 = -1.04E-4 )
2333     PARAMETER (ZERO = 0.)
2334     PARAMETER (TWO89= 2.89E-5)
2335     PARAMETER ( ZP44= 0.44)
2336     PARAMETER ( ZP01= 0.01)
2337     PARAMETER ( ZP1 = 0.1 )
2338     PARAMETER ( ZP001= 0.001)
2339     PARAMETER ( HALF= 0.5)
2340     PARAMETER ( ZP578 = 0.578 )
2341     PARAMETER ( ONE = 1.)
2342     PARAMETER ( THOUSAND = 1000.)
2343     PARAMETER ( Z3600 = 3600.)
2344     C
2345 molod 1.13 _RL EVP9(IRUN,NLAY)
2346     _RL water(irun),crystal(irun)
2347     _RL watevap(irun),iceevap(irun)
2348     _RL fracwat,fracice, tice,rh,fact,dum
2349     _RL rainmax(irun)
2350     _RL getcon,rphf,elocp,cpog,relax
2351     _RL exparg,arearat,rpow
2352 molod 1.9
2353     integer i,L,n,nlaym1,irnlay,irnlm1
2354 molod 1.1
2355     c Explicit Inline Directives
2356     c --------------------------
2357 molod 1.10 #ifdef CRAY
2358     #ifdef f77
2359 molod 1.1 cfpp$ expand (qsat)
2360     #endif
2361     #endif
2362    
2363     tice = getcon('FREEZING-POINT')
2364    
2365     fracwat = 0.70
2366     fracice = 0.01
2367    
2368     NLAYM1 = NLAY - 1
2369     IRNLAY = IRUN*NLAY
2370     IRNLM1 = IRUN*(NLAY-1)
2371    
2372     RPHF = Z3600/tmscl
2373    
2374     ELOCP = alhl/cp
2375     CPOG = cp/gravity
2376    
2377     DO I = 1,IRUN
2378     RLAR(I) = 0.
2379     water(i) = 0.
2380     crystal(i) = 0.
2381     ENDDO
2382    
2383     do L = 1,nlay
2384     do i = 1,irun
2385     EVP9(i,L) = 0.
2386     TEMP1(i,L) = 0.
2387     TEMP2(i,L) = 0.
2388     TEMP3(i,L) = 0.
2389     CLSBTH(i,L) = 0.
2390     cldlz(i,L) = 0.
2391     enddo
2392     enddo
2393    
2394     C RHO(ZERO) / RHO FOR TERMINAL VELOCITY APPROX.
2395     c ---------------------------------------------
2396     DO L = 1,NLAY
2397     DO I = 1,IRUN
2398     TEMP2(I,L) = PL(I,L)*ZP001
2399     TEMP2(I,L) = SQRT(TEMP2(I,L))
2400     ENDDO
2401     ENDDO
2402    
2403     C INVERSE OF MASS IN EACH LAYER
2404     c -----------------------------
2405     DO L = 1,NLAY
2406     DO I = 1,IRUN
2407 molod 1.6 TEMP3(I,L) = GRAVITY*ZP01 / DP(I,L)
2408 molod 1.1 ENDDO
2409     ENDDO
2410    
2411     C DO LOOP FOR MOISTURE EVAPORATION ABILITY AND CONVEC EVAPORATION.
2412     c ----------------------------------------------------------------
2413     DO 100 L=1,NLAY
2414    
2415     DO I = 1,IRUN
2416     TEMP1(I,3) = TL(I,L)
2417     TEMP1(I,4) = QL(I,L)
2418     ENDDO
2419    
2420     DO 50 N=1,2
2421     IF(N.EQ.1)RELAX=HALF
2422     IF(N.GT.1)RELAX=ONE
2423    
2424     DO I = 1,IRUN
2425     call qsat ( temp1(i,3),pl(i,L),temp1(i,2),temp1(i,6),.true. )
2426     TEMP1(I,5)=TEMP1(I,2)-TEMP1(I,4)
2427     TEMP1(I,6)=TEMP1(I,6)*ELOCP
2428     TEMP1(I,5)=TEMP1(I,5)/(ONE+TEMP1(I,6))
2429     TEMP1(I,4)=TEMP1(I,4)+TEMP1(I,5)*RELAX
2430     TEMP1(I,3)=TEMP1(I,3)-TEMP1(I,5)*ELOCP*RELAX
2431     ENDDO
2432     50 CONTINUE
2433    
2434     DO I = 1,IRUN
2435     EVP9(I,L) = (TEMP1(I,4) - QL(I,L))/TEMP3(I,L)
2436     C convective detrained water
2437     cldlz(i,L) = rain(i,L)*temp3(i,L)
2438     if( tl(i,L).gt.tice-20.) then
2439     water(i) = water(i) + rain(i,L)
2440     else
2441     crystal(i) = crystal(i) + rain(i,L)
2442     endif
2443     ENDDO
2444    
2445     C**********************************************************************
2446     C FOR CONVECTIVE PRECIP, FIND THE "EVAPORATION EFFICIENCY" USING *
2447     C KESSLERS PARAMETERIZATION *
2448     C**********************************************************************
2449    
2450     DO 20 I=1,IRUN
2451    
2452     iceevap(i) = 0.
2453     watevap(i) = 0.
2454    
2455     if( (evp9(i,L).gt.0.) .and. (crystal(i).gt.0.) ) then
2456     iceevap(I) = EVP9(I,L)*fracice
2457     IF(iceevap(i).GE.crystal(i)) iceevap(i) = crystal(i)
2458     EVP9(I,L)=EVP9(I,L)-iceevap(I)
2459     crystal(i) = crystal(i) - iceevap(i)
2460     endif
2461    
2462     C and now warm precipitate
2463     if( (evp9(i,L).gt.0.) .and. (water(i).gt.0.) ) then
2464     exparg = ZM1P04*tmscl*((water(i)*RPHF*TEMP2(I,L))**ZP578)
2465     AREARAT = ONE-(EXP(EXPARG))
2466     watevap(I) = EVP9(I,L)*AREARAT*fracwat
2467     IF(watevap(I).GE.water(i)) watevap(I) = water(i)
2468     EVP9(I,L)=EVP9(I,L)-watevap(I)
2469     water(i) = water(i) - watevap(i)
2470     endif
2471    
2472     QL(I,L) = QL(I,L)+(iceevap(i)+watevap(i))*TEMP3(I,L)
2473     TL(I,L) = TL(I,L)-(iceevap(i)+watevap(i))*TEMP3(I,L)*ELOCP
2474    
2475     20 CONTINUE
2476    
2477     100 CONTINUE
2478    
2479     do i = 1,irun
2480     rcon(i) = water(i) + crystal(i)
2481     enddo
2482    
2483     C**********************************************************************
2484     C Large Scale Precip
2485     C**********************************************************************
2486    
2487     DO 200 L=1,NLAY
2488     DO I = 1,IRUN
2489     rainmax(i) = rhcrit(i,L)*evp9(i,L) +
2490     . ql(i,L)*(rhcrit(i,L)-1.)/temp3(i,L)
2491    
2492     if (rainmax(i).LE.0.0) then
2493     call qsat( tl(i,L),pl(i,L),rh,dum,.false.)
2494     rh = ql(i,L)/rh
2495    
2496     if( rhcrit(i,L).eq.1.0 ) then
2497     fact = 1.0
2498     else
2499     fact = min( 1.0, alpha + (1.0-alpha)*( rh-rhcrit(i,L)) /
2500     1 (1.0-rhcrit(i,L)) )
2501     endif
2502    
2503     C Do not allow clouds above 10 mb
2504     if( pl(i,L).ge.10.0 ) CLSBTH(I,L) = fact
2505     RLAR(I) = RLAR(I)-rainmax(I)
2506     QL(I,L) = QL(I,L)+rainmax(I)*TEMP3(I,L)
2507     TL(I,L) = TL(I,L)-rainmax(I)*TEMP3(I,L)*ELOCP
2508     C Large-scale water
2509     cldlz(i,L) = cldlz(i,L) - rainmax(i)*temp3(i,L)
2510     ENDIF
2511     ENDDO
2512    
2513     DO I=1,IRUN
2514     IF((RLAR(I).GT.0.0).AND.(rainmax(I).GT.0.0))THEN
2515     RPOW=(RLAR(I)*RPHF*TEMP2(I,L))**ZP578
2516     EXPARG = ZM1P04*tmscl*RPOW
2517     AREARAT = ONE-(EXP(EXPARG))
2518     TEMP1(I,7) = rainmax(I)*AREARAT
2519     IF(TEMP1(I,7).GE.RLAR(I)) TEMP1(I,7) = RLAR(I)
2520     RLAR(I) = RLAR(I)-TEMP1(I,7)
2521     QL(I,L) = QL(I,L)+TEMP1(I,7)*TEMP3(I,L)
2522     TL(I,L) = TL(I,L)-TEMP1(I,7)*TEMP3(I,L)*ELOCP
2523     ENDIF
2524     ENDDO
2525    
2526     200 CONTINUE
2527    
2528     RETURN
2529     END
2530     subroutine srclouds (th,q,plk,pl,plke,cloud,cldwat,irun,irise,
2531     1 rhc,offset,alpha)
2532     C***********************************************************************
2533     C
2534     C PURPOSE:
2535     C ========
2536     C Compute non-precipitating cloud fractions
2537     C based on Slingo and Ritter (1985).
2538     C Remove cloudiness where conditionally unstable.
2539     C
2540     C INPUT:
2541     C ======
2542     C th ......... Potential Temperature (irun,irise)
2543     C q .......... Specific Humidity (irun,irise)
2544     C plk ........ P**Kappa at mid-layer (irun,irise)
2545     C pl ......... Pressure at mid-layer (irun,irise)
2546     C plke ....... P**Kappa at edge (irun,irise+1)
2547     C irun ....... Horizontal dimension
2548     C irise ...... Vertical dimension
2549     C
2550     C OUTPUT:
2551     C =======
2552     C cloud ...... Cloud Fraction (irun,irise)
2553     C
2554     C***********************************************************************
2555    
2556     implicit none
2557     integer irun,irise
2558    
2559 molod 1.13 _RL th(irun,irise)
2560     _RL q(irun,irise)
2561     _RL plk(irun,irise)
2562     _RL pl(irun,irise)
2563     _RL plke(irun,irise+1)
2564    
2565     _RL cloud(irun,irise)
2566     _RL cldwat(irun,irise)
2567     _RL qs(irun,irise)
2568    
2569     _RL cp, alhl, getcon, akap
2570     _RL ratio, temp, elocp
2571     _RL rhcrit,rh,dum
2572 molod 1.9 integer i,L
2573 molod 1.1
2574 molod 1.13 _RL rhc(irun,irise)
2575     _RL offset,alpha
2576 molod 1.1
2577     c Explicit Inline Directives
2578     c --------------------------
2579 molod 1.10 #ifdef CRAY
2580     #ifdef f77
2581 molod 1.1 cfpp$ expand (qsat)
2582     #endif
2583     #endif
2584    
2585     cp = getcon('CP')
2586     alhl = getcon('LATENT HEAT COND')
2587     elocp = alhl/cp
2588     akap = getcon('KAPPA')
2589    
2590     do L = 1,irise
2591     do i = 1,irun
2592     temp = th(i,L)*plk(i,L)
2593     call qsat ( temp,pl(i,L),qs(i,L),dum,.false. )
2594     enddo
2595     enddo
2596    
2597     do L = 2,irise
2598     do i = 1,irun
2599     rh = q(i,L)/qs(i,L)
2600    
2601     rhcrit = rhc(i,L) - offset
2602     ratio = alpha*(rh-rhcrit)/offset
2603    
2604     if(cloud(i,L).eq. 0.0 .and. ratio.gt.0.0 ) then
2605     cloud(i,L) = min( ratio,1.0 )
2606     endif
2607    
2608     enddo
2609     enddo
2610    
2611     c Reduce clouds from conditionally unstable layer
2612     c -----------------------------------------------
2613     call ctei ( th,q,cloud,cldwat,pl,plk,plke,irun,irise )
2614    
2615     return
2616     end
2617    
2618     subroutine ctei ( th,q,cldfrc,cldwat,pl,plk,plke,im,lm )
2619     implicit none
2620     integer im,lm
2621 molod 1.13 _RL th(im,lm),q(im,lm),plke(im,lm+1),cldwat(im,lm)
2622     _RL plk(im,lm),pl(im,lm),cldfrc(im,lm)
2623 molod 1.1 integer i,L
2624 molod 1.13 _RL getcon,cp,alhl,elocp,cpoel,t,p,s,qs,dqsdt,dq
2625     _RL k,krd,kmm,f
2626 molod 1.1
2627     cp = getcon('CP')
2628     alhl = getcon('LATENT HEAT COND')
2629     cpoel = cp/alhl
2630     elocp = alhl/cp
2631    
2632     do L=lm,2,-1
2633     do i=1,im
2634     dq = q(i,L)+cldwat(i,L)-q(i,L-1)-cldwat(i,L-1)
2635     if( dq.eq.0.0 ) dq = 1.0e-20
2636     k = 1.0 + cpoel*plke(i,L)*( th(i,L)-th(i,L-1) ) / dq
2637    
2638     t = th(i,L)*plk(i,L)
2639     p = pl(i,L)
2640     call qsat ( t,p,qs,dqsdt,.true. )
2641    
2642     krd = ( cpoel*t*(1+elocp*dqsdt) )/( 1 + 1.608*dqsdt*t )
2643    
2644     kmm = ( 1+elocp*dqsdt )*( 1 + 0.392*cpoel*t )
2645     . / ( 2+(1+1.608*cpoel*t)*elocp*dqsdt )
2646    
2647     s = ( (k-krd)/(kmm-krd) )
2648     f = 1.0 - min( 1.0, max(0.0,1.0-exp(-s)) )
2649    
2650     cldfrc(i,L) = cldfrc(i,L)*f
2651     cldwat(i,L) = cldwat(i,L)*f
2652    
2653     enddo
2654     enddo
2655    
2656     return
2657     end
2658    
2659     subroutine back2grd(gathered,indeces,scattered,irun)
2660     implicit none
2661     integer i,irun,indeces(irun)
2662 molod 1.13 _RL gathered(irun),scattered(irun)
2663     _RL temp(irun)
2664 molod 1.1 do i = 1,irun
2665     temp(indeces(i)) = gathered(i)
2666     enddo
2667     do i = 1,irun
2668     scattered(i) = temp(i)
2669     enddo
2670     return
2671     end

  ViewVC Help
Powered by ViewVC 1.1.22