C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/exf/exf_zenithangle.F,v 1.4 2010/04/15 00:47:00 gforget Exp $ C $Name: $ #include "EXF_OPTIONS.h" SUBROUTINE EXF_ZENITHANGLE(myTime, myIter, myThid) C ================================================================== C SUBROUTINE exf_zenithangle C ================================================================== C C o compute zenith angle, derive albedo and C the incoming flux at the top of the atm. C C ================================================================== C SUBROUTINE exf_zenithangle C ================================================================== IMPLICIT NONE C == global variables == #include "EEPARAMS.h" #include "SIZE.h" #include "PARAMS.h" #include "DYNVARS.h" #include "GRID.h" #include "EXF_PARAM.h" #include "EXF_FIELDS.h" #include "EXF_CONSTANTS.h" # include "cal.h" C == routine arguments == _RL myTime INTEGER myIter INTEGER myThid #ifdef ALLOW_DOWNWARD_RADIATION #ifdef ALLOW_ZENITHANGLE C == local variables == INTEGER bi,bj INTEGER i,j integer iLat1,iLat2,iTyear1,iTyear2 _RL wLat1,wLat2,wTyear1,wTyear2 _RL H0, dD0dDsq, CZENdaily, CZENdiurnal _RL TDAY, TYEAR, ALBSEA1, ALPHA, CZEN, CZEN2 _RL DECLI, ZS, ZC, SJ, CJ, TMPA, TMPB, TMPL, hlim _RL SOLC, CSR1, CSR2, FLAT2, FSOL integer year0,mydate(4),difftime(4) integer dayStartDate(4),yearStartDate(4) _RL secondsInYear, myDateSeconds integer cal_IsLeap external cal_IsLeap C == end of interface == c solar constant c -------------- SOLC = 1368. _d 0 c note: it is fourth (342. _d 0) is called SOLC in pkg/aim_v23 c determine time of year/day c -------------------------- secondsInYear = ndaysnoleap * secondsperday if ( cal_IsLeap(year0,mythid) .eq. 2) & secondsInYear = ndaysleap * secondsperday c call cal_GetDate( myiter, mytime, mydate, mythid ) year0 = int(mydate(1)/10000.) yearStartDate(1) = year0 * 10000 + 101 yearStartDate(2) = 0 yearStartDate(3) = mydate(3) yearStartDate(4) = mydate(4) CALL cal_TimePassed(yearStartDate,mydate,difftime,myThid) CALL cal_ToSeconds (difftime,myDateSeconds,myThid) c TYEAR=myDateSeconds/secondsInYear c dayStartDate(1) = mydate(1) dayStartDate(2) = 0 dayStartDate(3) = mydate(3) dayStartDate(4) = mydate(4) CALL cal_TimePassed(dayStartDate,mydate,difftime,myThid) CALL cal_ToSeconds (difftime,myDateSeconds,myThid) c TDAY= myDateSeconds / ( 86400 . _d 0 ) c IF ( useExfZenAlbedo ) THEN DO bj = myByLo(myThid),myByHi(myThid) DO bi = myBxLo(myThid),myBxHi(myThid) DO j = 1,sNy DO i = 1,sNx if ( select_ZenAlbedo.EQ. 0) then ALBSEA1=exf_albedo elseif ( select_ZenAlbedo.EQ. 1) then c This is the default option: daily mean albedo (i.e. without diurnal cycle) c obtained from the reference table that was computed in exf_zenithangle_table.F. c c Using either daily or 6 hourly fields, this option yields correct values of daily upward sw flux. c c This is not the case for select_ZenAlbedo.GT.1 (see comments below). iTyear1= 1 + 365.*TYEAR wTyear1= iTyear1 - 365.*TYEAR iTyear2= iTyear1 + 1 wTyear2= 1.0 _d 0 - wTyear1 if ( zen_albedo_pointer(i,j,bi,bj).EQ. 181. _d 0 ) then iLat1=181 wLat1=0.5 _d 0 iLat2=181 wLat2=0.5 _d 0 else iLat1= zen_albedo_pointer(i,j,bi,bj) wLat1= 1. _d 0 + iLat1 - zen_albedo_pointer(i,j,bi,bj) iLat2= iLat1 + 1 wLat2= 1. _d 0 - wLat1 endif ALBSEA1= & wTyear1*wLat1*zen_albedo_table(iTyear1,iLat1)+ & wTyear1*wLat2*zen_albedo_table(iTyear1,iLat2)+ & wTyear2*wLat1*zen_albedo_table(iTyear2,iLat1)+ & wTyear2*wLat2*zen_albedo_table(iTyear2,iLat2) else!if ( select_ZenAlbedo.GT. 1) then c determine solar declination c --------------------------- c (formula from Hartmann textbook, after Spencer 1971) ALPHA= 2. _d 0*PI*TYEAR DECLI = 0.006918 _d 0 & - 0.399912 _d 0 * cos ( 1. _d 0 * ALPHA ) & + 0.070257 _d 0 * sin ( 1. _d 0 * ALPHA ) & - 0.006758 _d 0 * cos ( 2. _d 0 * ALPHA ) & + 0.000907 _d 0 * sin ( 2. _d 0 * ALPHA ) & - 0.002697 _d 0 * cos ( 3. _d 0 * ALPHA ) & + 0.001480 _d 0 * sin ( 3. _d 0 * ALPHA ) c note: alternative formulas include c 1) formula from aim_surf_bc.F, neglecting eccentricity: c ALPHA= 2. _d 0*PI*(TYEAR+10. _d 0/365. _d 0) c DECLI = COS(ALPHA) * ( -23.45 _d 0 * deg2rad) c 2) formulas that accounts for minor astronomic effects, e.g. c Yallop, B. D., Position of the sun to 1 minute of arc precision, H. M. Nautical Almanac Office, c Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, Sussex BN27 1RP, 1977. ZC = COS(DECLI) ZS = SIN(DECLI) SJ = SIN(yC(i,j,bi,bj) * deg2rad) CJ = COS(yC(i,j,bi,bj) * deg2rad) TMPA = SJ*ZS TMPB = CJ*ZC c determine DAILY VARYING cos of solar zenith angle CZEN c ------------------------------------------------------ c (formula from Hartmann textbook, classic trigo) CZENdiurnal = TMPA + TMPB * & cos( 2. _d 0 *PI* TDAY + xC(i,j,bi,bj) * deg2rad ) c note: a more complicated hour angle formula is given by Yallop 1977 if ( CZENdiurnal .LE.0 ) CZENdiurnal = 0. _d 0 c determine DAILY MEAN cos of solar zenith angle CZEN c --------------------------------------------------- c ( formula from aim_surf_bc.F <--> mean(CZEN*CZEN)/mean(CZEN) ) TMPL = -TMPA/TMPB IF (TMPL .GE. 1.0 _d 0) THEN CZEN = 0.0 _d 0 ELSEIF (TMPL .LE. -1.0 _d 0) THEN CZEN = (2.0 _d 0)*TMPA*PI CZEN2= PI*((2.0 _d 0)*TMPA*TMPA + TMPB*TMPB) CZEN = CZEN2/CZEN ELSE hlim = ACOS(TMPL) CZEN = 2.0 _d 0*(TMPA*hlim + TMPB*SIN(hlim)) CZEN2= 2.0 _d 0*TMPA*TMPA*hlim & + 4.0 _d 0*TMPA*TMPB*SIN(hlim) & + TMPB*TMPB*( hlim + 0.5 _d 0*SIN(2.0 _d 0*hlim) ) CZEN = CZEN2/CZEN ENDIF CZENdaily=CZEN c determine direct ocean albedo c ----------------------------- c (formula from Briegleb, Minnis, et al 1986) c c comments on select_ZenAlbedo.GT.1 methods: c - CZENdaily as computed in aim was found to imply sizable biases in daily upward sw fluxes. c It is not advised to use it, but it is kept in connection to pkg/aim_v23. c - CZENdiurnal should never be used with daily mean input fields. c Furthermore, at this point, it is not advised to use it even with 6 hourly swdown input fields. c This is because we simply time interpolate between 6 hourly swdown fields, so each day there c will be times when CZENdiurnal correctly reflects that it is night time, but swdown.NE.0. does not. c CZENdiurnal may actually be rather harmful in this context, since an inconsistency of phase between c CZENdiurnal and swdown will yield biases in daily mean upward sw fluxes. So ... if ( select_ZenAlbedo.EQ. 2) then CZEN=CZENdaily elseif ( select_ZenAlbedo.EQ. 3) then CZEN=CZENdiurnal else print *, 'select_ZenAlbedo is out of range' STOP 'ABNORMAL END: S/R EXF_ZENITHANGLE' endif ALBSEA1 = ( ( 2.6 _d 0 / (CZEN**(1.7 _d 0) + 0.065 _d 0) ) & + ( 15. _d 0 * (CZEN-0.1 _d 0) * (CZEN-0.5 _d 0) & * (CZEN-1.0 _d 0) ) ) / 100.0 _d 0 c endif!if ( select_ZenAlbedo.EQ. 0) then c determine overall albedo c ------------------------ c (approximation: half direct and half diffu.) zen_albedo (i,j,bi,bj) = & 0.5 _d 0 * exf_albedo + 0.5 _d 0 * ALBSEA1 ENDDO ENDDO ENDDO ENDDO endif! IF ( useExfZenAlbedo ) THEN IF ( useExfZenIncoming ) THEN DO bj = myByLo(myThid),myByHi(myThid) DO bi = myBxLo(myThid),myBxHi(myThid) DO j = 1,sNy DO i = 1,sNx c compute incoming flux at the top of the atm.: c --------------------------------------------- c (formula from Hartmann textbook, after Spencer 1971) ALPHA= 2. _d 0*PI*TYEAR ALPHA= 2. _d 0*PI*TYEAR DECLI = 0.006918 _d 0 & - 0.399912 _d 0 * cos ( 1. _d 0 * ALPHA ) & + 0.070257 _d 0 * sin ( 1. _d 0 * ALPHA ) & - 0.006758 _d 0 * cos ( 2. _d 0 * ALPHA ) & + 0.000907 _d 0 * sin ( 2. _d 0 * ALPHA ) & - 0.002697 _d 0 * cos ( 3. _d 0 * ALPHA ) & + 0.001480 _d 0 * sin ( 3. _d 0 * ALPHA ) dD0dDsq = 1.000110 _d 0 & + 0.034221 _d 0 * cos ( 1. _d 0 * ALPHA ) & + 0.001280 _d 0 * sin ( 1. _d 0 * ALPHA ) & + 0.000719 _d 0 * cos ( 2. _d 0 * ALPHA ) & + 0.000077 _d 0 * sin ( 2. _d 0 * ALPHA ) c DAILY VARYING value: ZC = COS(DECLI) ZS = SIN(DECLI) SJ = SIN(yC(i,j,bi,bj) * deg2rad) CJ = COS(yC(i,j,bi,bj) * deg2rad) TMPA = SJ*ZS TMPB = CJ*ZC CZEN = TMPA + TMPB * & cos( 2. _d 0 *PI* TDAY + xC(i,j,bi,bj) * deg2rad ) if ( CZEN .LE.0 ) CZEN = 0. _d 0 FSOL = SOLC * dD0dDsq * MAX( 0. _d 0, CZEN ) zen_fsol_diurnal (i,j,bi,bj) = FSOL c DAILY MEAN value: H0 = -tan( yC(i,j,bi,bj) *deg2rad ) * tan( DECLI ) if ( H0.LT.-1. _d 0 ) H0 = -1. _d 0 if ( H0.GT.1. _d 0 ) H0 = 1. _d 0 H0 = acos( H0 ) FSOL= SOLC * dD0dDsq / pi * & ( H0 * TMPA + sin(H0) * TMPB ) zen_fsol_daily (i,j,bi,bj) = FSOL c note: an alternative for the DAILY MEAN is, as done in pkg/aim_v23, c ALPHA= 2. _d 0*PI*(TYEAR+10. _d 0/365. _d 0) c CSR1=-0.796 _d 0*COS(ALPHA) c CSR2= 0.147 _d 0*COS(2. _d 0*ALPHA)-0.477 _d 0 c FLAT2 = 1.5 _d 0*SJ**2 - 0.5 _d 0 c FSOL = 0.25 _d 0 * SOLC * MAX( 0. _d 0, 1. _d 0+CSR1*SJ+CSR2*FLAT2 ) c zen_fsol_daily (i,j,bi,bj) = FSOL ENDDO ENDDO ENDDO ENDDO endif! IF ( useExfZenIncoming ) THEN #endif /* ALLOW_ZENITHANGLE */ #endif /* ALLOW_DOWNWARD_RADIATION */ RETURN END