/[MITgcm]/MITgcm/pkg/exf/exf_interp.F
ViewVC logotype

Annotation of /MITgcm/pkg/exf/exf_interp.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.22 - (hide annotations) (download)
Wed Jan 23 16:41:01 2008 UTC (16 years, 5 months ago) by mlosch
Branch: MAIN
Changes since 1.21: +72 -2 lines
  - improve vectorizability of exf_interp for TARGET_NEC_SX, makes code
    ugly but fast (vectorization is not yet complete)

1 mlosch 1.22 C $Header: /u/gcmpack/MITgcm/pkg/exf/exf_interp.F,v 1.21 2007/05/10 22:26:19 jmc Exp $
2 jmc 1.19 C $Name: $
3    
4 edhill 1.3 #include "EXF_OPTIONS.h"
5 jmc 1.20
6 dimitri 1.1 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
7     C Flux Coupler using C
8     C Bilinear interpolation of forcing fields C
9     C C
10     C B. Cheng (12/2002) C
11     C C
12     C added Bicubic (bnc 1/2003) C
13     C C
14     CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
15    
16 jmc 1.20 _RL FUNCTION LAGRAN(i,x,a,sp)
17 dimitri 1.1
18 jmc 1.20 INTEGER i
19 dimitri 1.1 _RS x
20 jmc 1.20 _RL a(4)
21     INTEGER sp
22    
23     C- local variables:
24     INTEGER k
25     _RL numer,denom
26 dimitri 1.1
27 jmc 1.20 numer = 1. _d 0
28     denom = 1. _d 0
29 dimitri 1.1
30 mlosch 1.22 #ifdef TARGET_NEC_SX
31     !CDIR UNROLL=8
32     #endif /* TARGET_NEC_SX */
33 dimitri 1.1 do k=1,sp
34 jmc 1.20 if ( k .ne. i) then
35 dimitri 1.1 denom = denom*(a(i) - a(k))
36     numer = numer*(x - a(k))
37 jmc 1.20 endif
38 dimitri 1.1 enddo
39    
40     lagran = numer/denom
41    
42 jmc 1.21 RETURN
43     END
44 dimitri 1.1
45    
46     SUBROUTINE exf_interp(
47     I infile,
48     I filePrec,
49     O arrayout,
50 heimbach 1.13 I irecord, xG_in, yG,
51 dimitri 1.2 I lon_0, lon_inc,
52     I lat_0, lat_inc,
53     I nx_in, ny_in, method, mythid)
54 dimitri 1.1
55 dimitri 1.4 implicit none
56    
57 jmc 1.20 C infile (string) :: name of the binary input file (direct access)
58     C filePrec (integer) :: number of bits per word in file (32 or 64)
59     C arrout ( _RL ) :: output array
60     C irecord (integer) :: record number to read
61     C xG,yG :: coordinates for output grid to interpolate to
62     C lon_0, lat_0 :: lon and lat of sw corner of global input grid
63     C lon_inc :: scalar x-grid increment
64     C lat_inc :: vector y-grid increments
65     C nx_in,ny_in (integer) :: size in x & y direction of input file to read
66     C method :: 1,11,21 for bilinear; 2,12,22 for bicubic
67     C :: 1,2 for tracer; 11,12 for U; 21,22 for V
68     C myThid (integer) :: My Thread Id number
69 dimitri 1.1 C
70    
71     #include "SIZE.h"
72     #include "EEPARAMS.h"
73 adcroft 1.7 #include "PARAMS.h"
74 dimitri 1.2
75     C subroutine variables
76     character*(*) infile
77     integer filePrec, irecord, nx_in, ny_in
78     _RL arrayout(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
79 jmc 1.20 _RS xG_in (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
80 dimitri 1.2 _RS yG (1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
81     _RL lon_0, lon_inc
82     _RL lat_0, lat_inc(ny_in-1)
83     integer method, mythid
84 dimitri 1.1
85 jmc 1.20 C functions
86     external lagran
87     _RL lagran
88    
89 dimitri 1.1 C local variables
90 dimitri 1.5 integer e_ind(snx,sny),w_ind(snx,sny)
91     integer n_ind(snx,sny),s_ind(snx,sny)
92 jmc 1.20 _RL px_ind(4), py_ind(4), ew_val(4)
93     _RL arrayin(-1:nx_in+2 , -1:ny_in+2)
94     _RL NorthValue
95     _RL x_in (-1:nx_in+2), y_in(-1:ny_in+2)
96 dimitri 1.5 integer i, j, k, l, js, bi, bj, sp, interp_unit
97 mlosch 1.22 #ifdef TARGET_NEC_SX
98     integer ic, ii, icnt
99     integer inx(snx*sny,2)
100     #endif
101 heimbach 1.13 _RS xG(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
102 jmc 1.20 _RL ninety
103     PARAMETER ( ninety = 90. )
104     _RS threeSixtyRS
105 heimbach 1.13 PARAMETER ( threeSixtyRS = 360. )
106 heimbach 1.12
107 jmc 1.14 C put xG in interval [ lon_0 , lon_0+360 [
108 heimbach 1.12 do bj=myByLo(myThid),myByHi(myThid)
109     do bi=myBxLo(myThid),myBxHi(myThid)
110     do j=1-OLy,sNy+OLy
111     do i=1-OLx,sNx+OLx
112 jmc 1.14 xG(i,j,bi,bj) = xG_in(i,j,bi,bj)-lon_0
113     & + threeSixtyRS*2.
114     xG(i,j,bi,bj) = lon_0+mod(xG(i,j,bi,bj),threeSixtyRS)
115 heimbach 1.12 enddo
116     enddo
117     enddo
118     enddo
119 heimbach 1.9
120     call exf_interp_read(
121 dimitri 1.15 I infile, filePrec,
122 heimbach 1.9 O arrayin,
123 dimitri 1.15 I irecord, nx_in, ny_in, mythid)
124 dimitri 1.2
125 dimitri 1.18 C setup input longitude grid
126     do i=-1,nx_in+2
127     x_in(i) = lon_0 + (i-1)*lon_inc
128     enddo
129 heimbach 1.12
130 dimitri 1.18 C setup input latitude grid
131     y_in(0) = lat_0 - lat_inc(1)
132     y_in(-1)= lat_0 - 2.*lat_inc(1)
133     y_in(1) = lat_0
134     do j=2,ny_in
135     y_in(j) = y_in(j-1) + lat_inc(j-1)
136     enddo
137     do j=ny_in+1,ny_in+2
138     if (y_in(j-1).eq.ninety) then
139     y_in(j) = 2 * ninety - y_in(j-2)
140     else
141     y_in(j) = min( y_in(j-1)+lat_inc(ny_in-1), ninety )
142     endif
143     enddo
144 dimitri 1.1
145     C enlarge boundary
146 dimitri 1.18 do j=1,ny_in
147     arrayin(0,j) = arrayin(nx_in,j)
148     arrayin(-1,j) = arrayin(nx_in-1,j)
149     arrayin(nx_in+1,j) = arrayin(1,j)
150     arrayin(nx_in+2,j) = arrayin(2,j)
151     enddo
152     do i=-1,nx_in+2
153     arrayin(i,0) = arrayin(i,1)
154     arrayin(i,-1) = arrayin(i,1)
155     arrayin(i,ny_in+1) = arrayin(i,ny_in)
156 jmc 1.20 arrayin(i,ny_in+2) = arrayin(i,ny_in)
157 dimitri 1.18 enddo
158 dimitri 1.4
159 dimitri 1.15 C For tracer (method=1,2) set to northernmost zonal-mean value
160     C at 90N to avoid sharp zonal gradients near the Pole.
161     C For U (method=11,12) set to zero at 90N to minimize velocity
162     C gradient at North Pole
163     C For V (method=11,12) set to northernmost zonal value at 90N,
164     C as is already done above in order to allow cross-PoleArctic flow
165 dimitri 1.18 do j=ny_in,ny_in+2
166     if (y_in(j).eq.ninety) then
167 dimitri 1.15 if (method.eq.1 .or. method.eq.2) then
168 jmc 1.20 NorthValue = 0.
169 dimitri 1.15 do i=1,nx_in
170 dimitri 1.18 NorthValue = NorthValue + arrayin(i,j)
171 dimitri 1.15 enddo
172     NorthValue = NorthValue / nx_in
173     do i=-1,nx_in+2
174 dimitri 1.18 arrayin(i,j) = NorthValue
175 dimitri 1.15 enddo
176     elseif (method.eq.11 .or. method.eq.12) then
177     do i=-1,nx_in+2
178 jmc 1.20 arrayin(i,j) = 0.
179 dimitri 1.15 enddo
180     endif
181     endif
182 dimitri 1.18 enddo
183 dimitri 1.15
184 dimitri 1.2 do bj = mybylo(mythid), mybyhi(mythid)
185     do bi = mybxlo(mythid), mybxhi(mythid)
186    
187     C check validity of input/output coordinates
188 dimitri 1.6 #ifdef ALLOW_DEBUG
189     if ( debugLevel .ge. debLevB ) then
190     do i=1,snx
191     do j=1,sny
192     if ( xG(i,j,bi,bj) .lt. x_in(0) .or.
193     & xG(i,j,bi,bj) .ge. x_in(nx_in+1) .or.
194     & yG(i,j,bi,bj) .lt. y_in(0) .or.
195     & yG(i,j,bi,bj) .ge. y_in(ny_in+1) ) then
196     print*,'ERROR in S/R EXF_INTERP:'
197     print*,' input grid must encompass output grid.'
198     print*,'i,j,bi,bj' ,i,j,bi,bj
199     print*,'xG,yG' ,xG(i,j,bi,bj),yG(i,j,bi,bj)
200     print*,'nx_in,ny_in' ,nx_in ,ny_in
201     print*,'x_in(0,nx_in+1)',x_in(0) ,x_in(nx_in+1)
202     print*,'y_in(0,ny_in+1)',y_in(0) ,y_in(ny_in+1)
203     STOP ' ABNORMAL END: S/R EXF_INTERP'
204     endif
205     enddo
206     enddo
207 dimitri 1.2 endif
208 dimitri 1.6 #endif /* ALLOW_DEBUG */
209 dimitri 1.1
210 jmc 1.20 C compute interpolation indices
211 dimitri 1.1 do i=1,snx
212 dimitri 1.5 do j=1,sny
213     if (xG(i,j,bi,bj)-x_in(1) .ge. 0.) then
214     w_ind(i,j) = int((xG(i,j,bi,bj)-x_in(1))/lon_inc) + 1
215     else
216     w_ind(i,j) = int((xG(i,j,bi,bj)-x_in(1))/lon_inc)
217     endif
218     e_ind(i,j) = w_ind(i,j) + 1
219 mlosch 1.22 enddo
220     enddo
221     #ifndef TARGET_NEC_SX
222     C use the original and more readable variant of the algorithm that
223     C has unvectorizable while-loops for each (i,j)
224     do i=1,snx
225     do j=1,sny
226 dimitri 1.6 js = ny_in*.5
227 dimitri 1.5 do while (yG(i,j,bi,bj) .lt. y_in(js))
228 dimitri 1.6 js = (js - 1)*.5
229 dimitri 1.5 enddo
230     do while (yG(i,j,bi,bj) .ge. y_in(js+1))
231     js = js + 1
232     enddo
233     s_ind(i,j) = js
234 mlosch 1.22 enddo
235     enddo
236     #else /* TARGET_NEC_SX defined */
237     C this variant vectorizes more efficiently than the original one because
238     C it moves the while loops out of the i,j loops (loop pushing) but
239     C it is ugly and incomprehensible
240     icnt = 0
241     do j=1,sny
242     do i=1,snx
243     s_ind(i,j) = ny_in*.5
244     icnt = icnt+1
245     inx(icnt,1) = i
246     inx(icnt,2) = j
247     enddo
248     enddo
249     do while (icnt .gt. 0)
250     ii = 0
251     !CDIR NODEP
252     do ic=1,icnt
253     i = inx(ic,1)
254     j = inx(ic,2)
255     if (yG(i,j,bi,bj) .lt. y_in(s_ind(i,j))) then
256     s_ind(i,j) = (s_ind(i,j) - 1)*.5
257     ii = ii+1
258     inx(ii,1) = i
259     inx(ii,2) = j
260     endif
261     enddo
262     icnt = ii
263     enddo
264     icnt = 0
265     do j=1,sny
266     do i=1,snx
267     icnt = icnt+1
268     inx(icnt,1) = i
269     inx(icnt,2) = j
270     enddo
271     enddo
272     do while (icnt .gt. 0)
273     ii = 0
274     !CDIR NODEP
275     do ic=1,icnt
276     i = inx(ic,1)
277     j = inx(ic,2)
278     if (yG(i,j,bi,bj) .ge. y_in(s_ind(i,j)+1)) then
279     s_ind(i,j) = s_ind(i,j) + 1
280     ii = ii+1
281     inx(ii,1) = i
282     inx(ii,2) = j
283     endif
284     enddo
285     icnt = ii
286     enddo
287     #endif /* TARGET_NEC_SX defined */
288     do i=1,snx
289     do j=1,sny
290     n_ind(i,j) = s_ind(i,j) + 1
291 dimitri 1.2 enddo
292 dimitri 1.1 enddo
293    
294 dimitri 1.15 if (method.eq.1 .or. method.eq.11 .or. method.eq.21) then
295 dimitri 1.1
296 dimitri 1.2 C bilinear interpolation
297     sp = 2
298     do j=1,sny
299     do i=1,snx
300 dimitri 1.1 arrayout(i,j,bi,bj) = 0.
301 dimitri 1.2 do l=0,1
302 dimitri 1.5 px_ind(l+1) = x_in(w_ind(i,j)+l)
303     py_ind(l+1) = y_in(s_ind(i,j)+l)
304 dimitri 1.1 enddo
305 dimitri 1.2 do k=1,2
306 dimitri 1.5 ew_val(k) = arrayin(w_ind(i,j),s_ind(i,j)+k-1)
307     & *lagran(1,xG(i,j,bi,bj),px_ind,sp)
308     & +arrayin(e_ind(i,j),s_ind(i,j)+k-1)
309     & *lagran(2,xG(i,j,bi,bj),px_ind,sp)
310 dimitri 1.2 arrayout(i,j,bi,bj)=arrayout(i,j,bi,bj)
311 dimitri 1.5 & +ew_val(k)*lagran(k,yG(i,j,bi,bj),py_ind,sp)
312 dimitri 1.1 enddo
313     enddo
314     enddo
315 dimitri 1.15 elseif (method .eq. 2 .or. method.eq.12 .or. method.eq.22) then
316 dimitri 1.1
317 dimitri 1.2 C bicubic interpolation
318     sp = 4
319     do j=1,sny
320     do i=1,snx
321 dimitri 1.1 arrayout(i,j,bi,bj) = 0.
322 dimitri 1.2 do l=-1,2
323 dimitri 1.5 px_ind(l+2) = x_in(w_ind(i,j)+l)
324     py_ind(l+2) = y_in(s_ind(i,j)+l)
325 dimitri 1.1 enddo
326 dimitri 1.2 do k=1,4
327     ew_val(k) =
328 dimitri 1.5 & arrayin(w_ind(i,j)-1,s_ind(i,j)+k-2)
329     & *lagran(1,xG(i,j,bi,bj),px_ind,sp)
330     & +arrayin(w_ind(i,j) ,s_ind(i,j)+k-2)
331     & *lagran(2,xG(i,j,bi,bj),px_ind,sp)
332     & +arrayin(e_ind(i,j) ,s_ind(i,j)+k-2)
333 jmc 1.20 & *lagran(3,xG(i,j,bi,bj),px_ind,sp)
334 dimitri 1.5 & +arrayin(e_ind(i,j)+1,s_ind(i,j)+k-2)
335     & *lagran(4,xG(i,j,bi,bj),px_ind,sp)
336 jmc 1.20 arrayout(i,j,bi,bj)=arrayout(i,j,bi,bj)
337 dimitri 1.5 & +ew_val(k)*lagran(k,yG(i,j,bi,bj),py_ind,sp)
338 dimitri 1.1 enddo
339 dimitri 1.2 enddo
340 dimitri 1.1 enddo
341 dimitri 1.2 else
342     stop 'stop in exf_interp.F: interpolation method not supported'
343     endif
344     enddo
345     enddo
346 dimitri 1.1
347 jmc 1.20 RETURN
348 dimitri 1.1 END

  ViewVC Help
Powered by ViewVC 1.1.22