/[MITgcm]/MITgcm/pkg/exf/exf_bulkformulae.F
ViewVC logotype

Contents of /MITgcm/pkg/exf/exf_bulkformulae.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (show annotations) (download)
Thu Oct 9 04:19:19 2003 UTC (20 years, 8 months ago) by edhill
Branch: MAIN
CVS Tags: checkpoint51k_post, checkpoint52e_pre, hrcube4, checkpoint52j_post, checkpoint51o_pre, checkpoint52e_post, checkpoint51n_pre, checkpoint51l_post, checkpoint51q_post, hrcube_1, branch-netcdf, checkpoint52d_pre, checkpoint51r_post, checkpoint52k_post, checkpoint52b_pre, checkpoint51o_post, checkpoint51p_post, checkpoint52a_pre, checkpoint51i_post, checkpoint52, checkpoint52d_post, checkpoint52a_post, checkpoint52b_post, checkpoint52f_post, checkpoint52c_post, checkpoint51l_pre, ecco_c52_e35, checkpoint52i_post, checkpoint52j_pre, checkpoint51t_post, checkpoint51n_post, checkpoint52i_pre, checkpoint51u_post, checkpoint52h_pre, checkpoint52f_pre, hrcube_2, hrcube_3, checkpoint51m_post, checkpoint51s_post
Branch point for: branch-nonh, tg2-branch, checkpoint51n_branch, netcdf-sm0
Changes since 1.3: +3 -3 lines
 o first check-in for the "branch-genmake2" merge
 o verification suite as run on shelley (gcc 3.2.2):

Wed Oct  8 23:42:29 EDT 2003
                T           S           U           V
G D M    c        m  s        m  s        m  s        m  s
E p a R  g  m  m  e  .  m  m  e  .  m  m  e  .  m  m  e  .
N n k u  2  i  a  a  d  i  a  a  d  i  a  a  d  i  a  a  d
2 d e n  d  n  x  n  .  n  x  n  .  n  x  n  .  n  x  n  .

OPTFILE=NONE

Y Y Y Y 13 16 16 16  0 16 16 16 16 16 16 16 16 13 12  0  0 pass  adjustment.128x64x1
Y Y Y Y 16 16 16 16  0 16 16 16 16 16 16  0  0 16 16  0  0 pass  adjustment.cs-32x32x1
Y Y Y Y 16 16 16 16  0 16 16 16 16 16 16 22  0 16 16 22  0 pass  adjust_nlfs.cs-32x32x1
Y Y Y Y -- 13 13 16 16 13 13 13 13 16 16 16 16 16 16 16 16 N/O   advect_cs
Y Y Y Y -- 22 16 16 16 16 16 16 13 16 16 16 16 16 16 16 16 N/O   advect_xy
Y Y Y Y -- 13 16 13 16 16 16 16 16 16 16 22 16 16 16 16 16 N/O   advect_xz
Y Y Y Y 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 pass  aim.5l_cs
Y Y Y Y 14 16 16 16 16 16 16 16 16 13 16 16 16 16 16 13 16 pass  aim.5l_Equatorial_Channel
Y Y Y Y 16 16 16 16 16 16 16 16 16 16 16 13 16 16 13 13 16 pass  aim.5l_LatLon
Y Y Y Y 13 16 16 16 16 16 16 16 16 16 13 12 13 13 16 13 16 pass  exp0
Y Y Y Y 14 16 16 16 16 16 16 16 22 16 16 16 13 16 16 22 16 pass  exp1
Y Y Y Y 13 13 16 13 16 16 16 16 16 13 13 16 16 13 13 13 13 pass  exp2
Y Y Y Y 16 16 16 16 16 16 16 16 22 16 16 16 16 16 16 16 16 pass  exp4
Y Y Y Y 16 16 16 16 16 16 16 16 16 16 16 22 16 16 16 22 16 pass  exp5
Y Y Y Y 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 pass  front_relax
Y Y Y Y 14 16 16 13 13 16 16 13 13 16 13 13 16 12 13 13 16 pass  global_ocean.90x40x15
Y Y Y Y 10 16 16 13 13 16 13 16 16 13 13 13 13 16 16 13 16 FAIL  global_ocean.cs32x15
Y Y Y Y  6 11 12 13 13 12 13 16 13  9  9  9  9 10  9  9 11 FAIL  global_ocean_pressure
Y Y Y Y 14 16 16 13 16 16 16 13 13 13 13 13 16 12 16 13 16 pass  global_with_exf
Y Y Y Y 14 16 16 16 16 16 16 16 16 11 13 22 13 16 16  9 16 pass  hs94.128x64x5
Y Y Y Y 13 16 16 16 16 16 16 16 16 11 16 16 16 13 16 22 13 pass  hs94.1x64x5
Y Y Y Y 14 16 16 16 16 16 16 16 16 13 16 13 13 16 16 22 13 pass  hs94.cs-32x32x5
Y Y Y Y 10 10 16 13 13 16 16 16 22 16 13 13 13 13 13 22 13 FAIL  ideal_2D_oce
Y Y Y Y  8 16 16 16 16 16 16 16 16 13 13  8 16 16 16 16 16 FAIL  internal_wave
Y Y Y Y 14 16 16 16 16 16 16 16 16 13 13 22 13 13 13 22 16 pass  inverted_barometer
Y Y Y Y 12 16 16 16 16 16 16 16 16 16 13 12 13 13 13 13 13 FAIL  lab_sea
Y Y Y Y 11 16 16 16 16 16 16 16 13 13 13 12 13 16 13 12 13 FAIL  natl_box
Y Y Y Y 16 16 16 16 16 16 16 16 22 16 16 16 16 16 16 16 16 pass  plume_on_slope
Y Y Y Y 13 16 16 16 16 13 16 16 16 16 16 16 16 13 16 16 16 pass  solid-body.cs-32x32x1

1 c $Header: /u/u3/gcmpack/MITgcm/pkg/exf/exf_bulkformulae.F,v 1.3.2.1 2003/10/02 18:30:07 adcroft Exp $
2
3 #include "EXF_OPTIONS.h"
4
5 subroutine exf_bulkformulae(mycurrenttime, mycurrentiter, mythid)
6
7 c ==================================================================
8 c SUBROUTINE exf_bulkformulae
9 c ==================================================================
10 c
11 c o Read-in atmospheric state and/or surface fluxes from files.
12 c
13 c o Use bulk formulae to estimate turbulent and/or radiative
14 c fluxes at the surface.
15 c
16 c NOTES:
17 c ======
18 c
19 c See EXF_OPTIONS.h for a description of the various possible
20 c ocean-model forcing configurations.
21 c
22 c The bulk formulae of pkg/exf are not valid for sea-ice covered
23 c oceans but they can be used in combination with a sea-ice model,
24 c for example, pkg/seaice, to specify open water flux contributions.
25 c
26 c ==================================================================
27 c
28 c The calculation of the bulk surface fluxes has been adapted from
29 c the NCOM model which uses the formulae given in Large and Pond
30 c (1981 & 1982 )
31 c
32 c
33 c Header taken from NCOM version: ncom1.4.1
34 c -----------------------------------------
35 c
36 c Following procedures and coefficients in Large and Pond
37 c (1981 ; 1982)
38 c
39 c Output: Bulk estimates of the turbulent surface fluxes.
40 c -------
41 c
42 c hs - sensible heat flux (W/m^2), into ocean
43 c hl - latent heat flux (W/m^2), into ocean
44 c
45 c Input:
46 c ------
47 c
48 c us - mean wind speed (m/s) at height hu (m)
49 c th - mean air temperature (K) at height ht (m)
50 c qh - mean air humidity (kg/kg) at height hq (m)
51 c sst - sea surface temperature (K)
52 c tk0 - Kelvin temperature at 0 Celsius (K)
53 c
54 c Assume 1) a neutral 10m drag coefficient =
55 c
56 c cdn = .0027/u10 + .000142 + .0000764 u10
57 c
58 c 2) a neutral 10m stanton number =
59 c
60 c ctn = .0327 sqrt(cdn), unstable
61 c ctn = .0180 sqrt(cdn), stable
62 c
63 c 3) a neutral 10m dalton number =
64 c
65 c cen = .0346 sqrt(cdn)
66 c
67 c 4) the saturation humidity of air at
68 c
69 c t(k) = exf_BulkqSat(t) (kg/m^3)
70 c
71 c Note: 1) here, tstar = <wt>/u*, and qstar = <wq>/u*.
72 c 2) wind speeds should all be above a minimum speed,
73 c say 0.5 m/s.
74 c 3) with optional iteration loop, niter=3, should suffice.
75 c 4) this version is for analyses inputs with hu = 10m and
76 c ht = hq.
77 c 5) sst enters in Celsius.
78 c
79 c ==================================================================
80 c
81 c started: Christian Eckert eckert@mit.edu 27-Aug-1999
82 c
83 c changed: Christian Eckert eckert@mit.edu 14-Jan-2000
84 c - restructured the original version in order to have a
85 c better interface to the MITgcmUV.
86 c
87 c Christian Eckert eckert@mit.edu 12-Feb-2000
88 c - Changed Routine names (package prefix: exf_)
89 c
90 c Patrick Heimbach, heimbach@mit.edu 04-May-2000
91 c - changed the handling of precip and sflux with respect
92 c to CPP options ALLOW_BULKFORMULAE and ALLOW_ATM_TEMP
93 c - included some CPP flags ALLOW_BULKFORMULAE to make
94 c sure ALLOW_ATM_TEMP, ALLOW_ATM_WIND are used only in
95 c conjunction with defined ALLOW_BULKFORMULAE
96 c - statement functions discarded
97 c
98 c Ralf.Giering@FastOpt.de 25-Mai-2000
99 c - total rewrite using new subroutines
100 c
101 c Detlef Stammer: include river run-off. Nov. 21, 2001
102 c
103 c heimbach@mit.edu, 10-Jan-2002
104 c - changes to enable field swapping
105 c
106 c mods for pkg/seaice: menemenlis@jpl.nasa.gov 20-Dec-2002
107 c
108 c ==================================================================
109 c SUBROUTINE exf_bulkformulae
110 c ==================================================================
111
112 implicit none
113
114 c == global variables ==
115
116 #include "EEPARAMS.h"
117 #include "SIZE.h"
118 #include "PARAMS.h"
119 #include "DYNVARS.h"
120 #include "GRID.h"
121
122 #include "exf_param.h"
123 #include "exf_fields.h"
124 #include "exf_constants.h"
125
126 #ifdef ALLOW_AUTODIFF_TAMC
127 #include "tamc.h"
128 #endif
129
130 c == routine arguments ==
131
132 integer mythid
133 integer mycurrentiter
134 _RL mycurrenttime
135
136 #ifdef ALLOW_BULKFORMULAE
137
138 c == local variables ==
139
140 integer bi,bj
141 integer i,j,k
142
143 _RL aln
144
145 #ifdef ALLOW_ATM_TEMP
146 integer iter
147 _RL delq
148 _RL deltap
149 _RL hqol
150 _RL htol
151 _RL huol
152 _RL psimh
153 _RL psixh
154 _RL qstar
155 _RL rd
156 _RL re
157 _RL rdn
158 _RL rh
159 _RL ssttmp
160 _RL ssq
161 _RL stable
162 _RL tstar
163 _RL t0
164 _RL ustar
165 _RL uzn
166 _RL shn
167 _RL xsq
168 _RL x
169 _RL tau
170 #ifdef ALLOW_AUTODIFF_TAMC
171 integer ikey_1
172 integer ikey_2
173 #endif
174 #endif /* ALLOW_ATM_TEMP */
175
176 _RL ustmp
177 _RL us
178 _RL cw
179 _RL sw
180 _RL sh
181 _RL hs(1-olx:snx+olx,1-oly:sny+oly,nsx,nsy)
182 _RL hl(1-olx:snx+olx,1-oly:sny+oly,nsx,nsy)
183 _RL hfl
184
185 c == external functions ==
186
187 integer ilnblnk
188 external ilnblnk
189
190 _RL exf_BulkqSat
191 external exf_BulkqSat
192 _RL exf_BulkCdn
193 external exf_BulkCdn
194 _RL exf_BulkRhn
195 external exf_BulkRhn
196
197 #ifndef ALLOW_ATM_WIND
198 _RL TMP1
199 _RL TMP2
200 _RL TMP3
201 _RL TMP4
202 _RL TMP5
203 #endif
204
205 c == end of interface ==
206
207 cph This statement cannot be a PARAMETER statement in the header,
208 cph but must come here; it's not fortran77 standard
209 aln = log(ht/zref)
210
211 c-- Use atmospheric state to compute surface fluxes.
212
213 c Loop over tiles.
214 #ifdef ALLOW_AUTODIFF_TAMC
215 C-- HPF directive to help TAMC
216 CHPF$ INDEPENDENT
217 #endif
218 do bj = mybylo(mythid),mybyhi(mythid)
219 #ifdef ALLOW_AUTODIFF_TAMC
220 C-- HPF directive to help TAMC
221 CHPF$ INDEPENDENT
222 #endif
223 do bi = mybxlo(mythid),mybxhi(mythid)
224
225 k = 1
226
227 do j = 1,sny
228 do i = 1,snx
229
230 #ifdef ALLOW_AUTODIFF_TAMC
231 act1 = bi - myBxLo(myThid)
232 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
233 act2 = bj - myByLo(myThid)
234 max2 = myByHi(myThid) - myByLo(myThid) + 1
235 act3 = myThid - 1
236 max3 = nTx*nTy
237 act4 = ikey_dynamics - 1
238
239 ikey_1 = i
240 & + sNx*(j-1)
241 & + sNx*sNy*act1
242 & + sNx*sNy*max1*act2
243 & + sNx*sNy*max1*max2*act3
244 & + sNx*sNy*max1*max2*max3*act4
245 #endif
246
247 #ifdef ALLOW_DOWNWARD_RADIATION
248 c-- Compute net from downward and downward from net longwave and
249 c shortwave radiation, if needed.
250 c lwflux = Stefan-Boltzman constant * emissivity * SST - lwdown
251 c swflux = - ( 1 - albedo ) * swdown
252
253 #ifdef ALLOW_ATM_TEMP
254 if ( lwfluxfile .EQ. ' ' .AND. lwdownfile .NE. ' ' )
255 & lwflux(i,j,bi,bj) = 5.5 _d -08 *
256 & ((theta(i,j,k,bi,bj)+cen2kel)**4)
257 & - lwdown(i,j,bi,bj)
258 if ( lwfluxfile .NE. ' ' .AND. lwdownfile .EQ. ' ' )
259 & lwdown(i,j,bi,bj) = 5.5 _d -08 *
260 & ((theta(i,j,k,bi,bj)+cen2kel)**4)
261 & - lwflux(i,j,bi,bj)
262 #endif
263
264 #if defined(ALLOW_ATM_TEMP) || defined(SHORTWAVE_HEATING)
265 if ( swfluxfile .EQ. ' ' .AND. swdownfile .NE. ' ' )
266 & swflux(i,j,bi,bj) = -0.9 _d 0 * swdown(i,j,bi,bj)
267 if ( swfluxfile .NE. ' ' .AND. swdownfile .EQ. ' ' )
268 & swdown(i,j,bi,bj) = -1.111111 _d 0 * swflux(i,j,bi,bj)
269 #endif
270
271 #endif /* ALLOW_DOWNWARD_RADIATION */
272
273 c-- Compute the turbulent surface fluxes.
274
275 #ifdef ALLOW_ATM_WIND
276 c Wind speed and direction.
277 ustmp = uwind(i,j,bi,bj)*uwind(i,j,bi,bj) +
278 & vwind(i,j,bi,bj)*vwind(i,j,bi,bj)
279 if ( ustmp .ne. 0. _d 0 ) then
280 us = sqrt(ustmp)
281 cw = uwind(i,j,bi,bj)/us
282 sw = vwind(i,j,bi,bj)/us
283 else
284 us = 0. _d 0
285 cw = 0. _d 0
286 sw = 0. _d 0
287 endif
288 sh = max(us,umin)
289 #else /* ifndef ALLOW_ATM_WIND */
290 #ifdef ALLOW_ATM_TEMP
291
292 c The variables us, sh and rdn have to be computed from
293 c given wind stresses inverting relationship for neutral
294 c drag coeff. cdn.
295 c The inversion is based on linear and quadratic form of
296 c cdn(umps); ustar can be directly computed from stress;
297
298 ustmp = ustress(i,j,bi,bj)*ustress(i,j,bi,bj) +
299 & vstress(i,j,bi,bj)*vstress(i,j,bi,bj)
300 if ( ustmp .ne. 0. _d 0 ) then
301 ustar = sqrt(ustmp/atmrho)
302 cw = ustress(i,j,bi,bj)/sqrt(ustmp)
303 sw = vstress(i,j,bi,bj)/sqrt(ustmp)
304 else
305 ustar = 0. _d 0
306 cw = 0. _d 0
307 sw = 0. _d 0
308 endif
309
310 if ( ustar .eq. 0. _d 0 ) then
311 us = 0. _d 0
312 else if ( ustar .lt. ustofu11 ) then
313 tmp1 = -cquadrag_2/cquadrag_1/2
314 tmp2 = sqrt(tmp1*tmp1 + ustar*ustar/cquadrag_1)
315 us = sqrt(tmp1 + tmp2)
316 else
317 tmp3 = clindrag_2/clindrag_1/3
318 tmp4 = ustar*ustar/clindrag_1/2 - tmp3**3
319 tmp5 = sqrt(ustar*ustar/clindrag_1*
320 & (ustar*ustar/clindrag_1/4 - tmp3**3))
321 us = (tmp4 + tmp5)**(1/3) +
322 & tmp3**2 * (tmp4 + tmp5)**(-1/3) - tmp3
323 endif
324
325 if ( us .ne. 0 ) then
326 rdn = ustar/us
327 else
328 rdn = 0. _d 0
329 end if
330
331 sh = max(us,umin)
332 #endif /* ALLOW_ATM_TEMP */
333 #endif /* ifndef ALLOW_ATM_WIND */
334
335 #ifdef ALLOW_ATM_TEMP
336
337 c Initial guess: z/l=0.0; hu=ht=hq=z
338 c Iterations: converge on z/l and hence the fluxes.
339 c t0 : virtual temperature (K)
340 c ssq : sea surface humidity (kg/kg)
341 c deltap : potential temperature diff (K)
342
343 if ( atemp(i,j,bi,bj) .ne. 0. _d 0 ) then
344 t0 = atemp(i,j,bi,bj)*
345 & (exf_one + humid_fac*aqh(i,j,bi,bj))
346 ssttmp = theta(i,j,k,bi,bj)
347 ssq = saltsat*
348 & exf_BulkqSat(ssttmp + cen2kel)/
349 & atmrho
350 deltap = atemp(i,j,bi,bj) + gamma_blk*ht -
351 & ssttmp - cen2kel
352 delq = aqh(i,j,bi,bj) - ssq
353 stable = exf_half + sign(exf_half, deltap)
354 #ifdef ALLOW_AUTODIFF_TAMC
355 CADJ STORE sh = comlev1_exf_1, key = ikey_1
356 #endif
357 rdn = sqrt(exf_BulkCdn(sh))
358 ustar = rdn*sh
359 tstar = exf_BulkRhn(stable)*deltap
360 qstar = cdalton*delq
361
362 do iter = 1,niter_bulk
363
364 #ifdef ALLOW_AUTODIFF_TAMC
365 ikey_2 = iter
366 & + niter_bulk*(i-1)
367 & + sNx*niter_bulk*(j-1)
368 & + sNx*niter_bulk*sNy*act1
369 & + sNx*niter_bulk*sNy*max1*act2
370 & + sNx*niter_bulk*sNy*max1*max2*act3
371 & + sNx*niter_bulk*sNy*max1*max2*max3*act4
372
373 CADJ STORE rdn = comlev1_exf_2, key = ikey_2
374 CADJ STORE ustar = comlev1_exf_2, key = ikey_2
375 CADJ STORE qstar = comlev1_exf_2, key = ikey_2
376 CADJ STORE tstar = comlev1_exf_2, key = ikey_2
377 CADJ STORE sh = comlev1_exf_2, key = ikey_2
378 CADJ STORE us = comlev1_exf_2, key = ikey_2
379 #endif
380
381 huol = czol*(tstar/t0 +
382 & qstar/(exf_one/humid_fac+aqh(i,j,bi,bj)))/
383 & ustar**2
384 huol = max(huol,zolmin)
385 stable = exf_half + sign(exf_half, huol)
386 htol = huol*ht/hu
387 hqol = huol*hq/hu
388
389 c Evaluate all stability functions assuming hq = ht.
390 xsq = max(sqrt(abs(exf_one - 16.*huol)),exf_one)
391 x = sqrt(xsq)
392 psimh = -psim_fac*huol*stable +
393 & (exf_one - stable)*
394 & log((exf_one + x*(exf_two + x))*
395 & (exf_one + xsq)/8.) - exf_two*atan(x) +
396 & pi*exf_half
397 xsq = max(sqrt(abs(exf_one - 16.*htol)),exf_one)
398 psixh = -psim_fac*htol*stable + (exf_one - stable)*
399 & exf_two*log((exf_one + xsq)/exf_two)
400
401 c Shift wind speed using old coefficient
402 ccc rd = rdn/(exf_one + rdn/karman*
403 ccc & (log(hu/zref) - psimh) )
404 rd = rdn/(exf_one - rdn/karman*psimh )
405 shn = sh*rd/rdn
406 uzn = max(shn, umin)
407
408 c Update the transfer coefficients at 10 meters
409 c and neutral stability.
410
411 rdn = sqrt(exf_BulkCdn(uzn))
412
413 c Shift all coefficients to the measurement height
414 c and stability.
415 c rd = rdn/(exf_one + rdn/karman*(log(hu/zref) - psimh))
416 rd = rdn/(exf_one - rdn/karman*psimh)
417 rh = exf_BulkRhn(stable)/(exf_one +
418 & exf_BulkRhn(stable)/
419 & karman*(aln - psixh))
420 re = cdalton/(exf_one + cdalton/karman*(aln - psixh))
421
422 c Update ustar, tstar, qstar using updated, shifted
423 c coefficients.
424 ustar = rd*sh
425 qstar = re*delq
426 tstar = rh*deltap
427 tau = atmrho*ustar**2
428 tau = tau*us/sh
429
430 enddo
431
432 #ifdef ALLOW_AUTODIFF_TAMC
433 CADJ STORE ustar = comlev1_exf_1, key = ikey_1
434 CADJ STORE qstar = comlev1_exf_1, key = ikey_1
435 CADJ STORE tstar = comlev1_exf_1, key = ikey_1
436 CADJ STORE tau = comlev1_exf_1, key = ikey_1
437 CADJ STORE cw = comlev1_exf_1, key = ikey_1
438 CADJ STORE sw = comlev1_exf_1, key = ikey_1
439 #endif
440
441 hs(i,j,bi,bj) = atmcp*tau*tstar/ustar
442 hl(i,j,bi,bj) = flamb*tau*qstar/ustar
443 #ifndef EXF_READ_EVAP
444 cdm evap(i,j,bi,bj) = tau*qstar/ustar
445 cdm !!! need to change sign and to convert from kg/m^2/s to m/s !!!
446 evap(i,j,bi,bj) = -recip_rhonil*tau*qstar/ustar
447 #endif
448 ustress(i,j,bi,bj) = tau*cw
449 vstress(i,j,bi,bj) = tau*sw
450 else
451 ustress(i,j,bi,bj) = 0. _d 0
452 vstress(i,j,bi,bj) = 0. _d 0
453 hflux (i,j,bi,bj) = 0. _d 0
454 hs(i,j,bi,bj) = 0. _d 0
455 hl(i,j,bi,bj) = 0. _d 0
456 endif
457
458 #else /* ifndef ALLOW_ATM_TEMP */
459 #ifdef ALLOW_ATM_WIND
460 ustress(i,j,bi,bj) = atmrho*exf_BulkCdn(sh)*us*
461 & uwind(i,j,bi,bj)
462 vstress(i,j,bi,bj) = atmrho*exf_BulkCdn(sh)*us*
463 & vwind(i,j,bi,bj)
464 #endif
465 #endif /* ifndef ALLOW_ATM_TEMP */
466 enddo
467 enddo
468 enddo
469 enddo
470
471 c Add all contributions.
472 do bj = mybylo(mythid),mybyhi(mythid)
473 do bi = mybxlo(mythid),mybxhi(mythid)
474 do j = 1,sny
475 do i = 1,snx
476 c Net surface heat flux.
477 #ifdef ALLOW_ATM_TEMP
478 hfl = 0. _d 0
479 hfl = hfl - hs(i,j,bi,bj)
480 hfl = hfl - hl(i,j,bi,bj)
481 hfl = hfl + lwflux(i,j,bi,bj)
482 #ifndef SHORTWAVE_HEATING
483 hfl = hfl + swflux(i,j,bi,bj)
484 #endif
485 c Heat flux:
486 hflux(i,j,bi,bj) = hfl
487 c Salt flux from Precipitation and Evaporation.
488 sflux(i,j,bi,bj) = evap(i,j,bi,bj) - precip(i,j,bi,bj)
489 #endif /* ALLOW_ATM_TEMP */
490
491 enddo
492 enddo
493 enddo
494 enddo
495
496 #endif /* ALLOW_BULKFORMULAE */
497
498 end

  ViewVC Help
Powered by ViewVC 1.1.22