/[MITgcm]/MITgcm/pkg/ebm/ebm_atmosphere.F
ViewVC logotype

Contents of /MITgcm/pkg/ebm/ebm_atmosphere.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download)
Mon Oct 1 13:35:34 2007 UTC (16 years, 7 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint60, checkpoint61, checkpoint59q, checkpoint59p, checkpoint59r, checkpoint59m, checkpoint59l, checkpoint59o, checkpoint59n, checkpoint59i, checkpoint59k, checkpoint59j, checkpoint61f, checkpoint61g, checkpoint61d, checkpoint61e, checkpoint61b, checkpoint61c, checkpoint61a, checkpoint61l, checkpoint61j, checkpoint61k, checkpoint61h, checkpoint61i
Changes since 1.4: +4 -11 lines
Change EmPmR units: from m/s to kg/m2/s

1 C $Header: /u/gcmpack/MITgcm/pkg/ebm/ebm_atmosphere.F,v 1.4 2004/07/28 19:54:37 heimbach Exp $
2 C $Name: $
3
4 #include "EBM_OPTIONS.h"
5
6 SUBROUTINE EBM_ATMOSPHERE ( myTime, myiter, myThid )
7
8 C |==========================================================|
9 C | S/R CALCULATE FORCING FROM ENERGY AND MOISTURE |
10 C | BALANCE ATMOSPHERE |
11 C |==========================================================|
12 C References:
13 C * X. Wang, P. Stone and J. Marotzke, 1999:
14 C Global thermohaline circulation. Part I:
15 C Sensitivity to atmospheric moisture transport.
16 C J. Climate 12(1), 71-82
17 C * X. Wang, P. Stone and J. Marotzke, 1999:
18 C Global thermohaline circulation. Part II:
19 C Sensitivity with interactive transport.
20 C J. Climate 12(1), 83-91
21 C * M. Nakamura, P. Stone and J. Marotzke, 1994:
22 C Destabilization of the thermohaline circulation
23 C by atmospheric eddy transports.
24 C J. Climate 7(12), 1870-1882
25
26 IMPLICIT NONE
27
28 C === Global variables ===
29 #include "SIZE.h"
30 #include "EEPARAMS.h"
31 #include "PARAMS.h"
32 #include "FFIELDS.h"
33 #include "GRID.h"
34 #include "EBM.h"
35 #ifdef ALLOW_AUTODIFF_TAMC
36 # include "tamc.h"
37 # include "tamc_keys.h"
38 #endif
39
40 C === Routine arguments ===
41 C myThid - Instance number for this innvocation of CALC_FORCING
42 INTEGER myThid
43 INTEGER myIter
44 _RL myTime
45 CEndOfInterface
46
47 #ifdef ALLOW_EBM
48
49 C == Local variables ==
50 _RL ReCountX(1-OLy:sNy+OLy,nSy)
51 INTEGER bi, bj
52 INTEGER i, j
53 INTEGER no_so
54 INTEGER iebmkey
55 LOGICAL TOP_LAYER
56
57 C-- Top layer only
58 cph TOP_LAYER = k .EQ. 1
59
60 cph IF ( TOP_LAYER ) THEN
61
62 DO bj=myByLo(myThid),myByHi(myThid)
63 DO bi=myBxLo(myThid),myBxHi(myThid)
64
65 #ifdef ALLOW_AUTODIFF_TAMC
66 act1 = bi - myBxLo(myThid)
67 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
68 act2 = bj - myByLo(myThid)
69 max2 = myByHi(myThid) - myByLo(myThid) + 1
70 act3 = myThid - 1
71 max3 = nTx*nTy
72 act4 = ikey_dynamics - 1
73 iebmkey = (act1 + 1) + act2*max1
74 & + act3*max1*max2
75 & + act4*max1*max2*max3
76 #endif /* ALLOW_AUTODIFF_TAMC */
77
78 DO j=1-oLy,sNy+oLy
79 DO i=1-oLx,sNx+oLx
80 S(i,j,bj) = 0.0
81 P2(i,j,bj) = 0.0
82 P4(i,j,bj) = 0.0
83 ENDDO
84 SW(j,bj) = 0.0
85 LW(j,bj) = 0.0
86 Hd(j,bj) = 0.0
87 Fw(j,bj) = 0.0
88 T(j,bj) = 0.0
89 ReCountX(j,bj) = 0.0
90 ENDDO
91
92 print *, 'SH', TmlS-t_mlt, TtS-t_mlt
93 print *, 'NH', TmlN-t_mlt, TtN-t_mlt
94
95 C-- account for ice (can absorb heat on an annual averaged basis)
96 C-- Greenland in Northern Hemisphere, Antarctica in Southern
97 DO j = 1,sNy
98 ReCountX(j,bj) = CountX(j,bj)
99 IF (yC(1,j,bi,bj) .LE. -62.0) THEN
100 ReCountX(j,bj) = 90.
101 ELSE IF (yC(1,j,bi,bj) .EQ. 74.0) THEN
102 ReCountX(j,bj) = CountX(j,bj) + 9.0
103 ELSE IF (yC(1,j,bi,bj) .EQ. 70.0) THEN
104 ReCountX(j,bj) = CountX(j,bj) + 8.0
105 ELSE IF (yC(1,j,bi,bj) .EQ. 66.0) THEN
106 ReCountX(j,bj) = CountX(j,bj) + 5.0
107 ELSE IF (yC(1,j,bi,bj) .EQ. 62.0) THEN
108 ReCountX(j,bj) = CountX(j,bj) + 1.0
109 ENDIF
110 ENDDO
111 #ifdef ALLOW_AUTODIFF_TAMC
112 CADJ STORE ReCountX(:,bj) = comlev1_bibj, key=iebmkey, byte=isbyte
113 #endif
114
115 c=====================================================
116 c Fit area-weighed averaged SST north/south of 34
117 c degree to second Legendre polynomial:
118 c=======================================================
119 T_var(1) = SIN(lat(2)*deg2rad) - SIN(lat(1)*deg2rad)
120 T_var(2) = SIN(lat(3)*deg2rad) - SIN(lat(2)*deg2rad)
121 T_var(3) = SIN(lat(2)*deg2rad)**3. - SIN(lat(1)*deg2rad)**3.
122 T_var(4) = SIN(lat(3)*deg2rad)**3. - SIN(lat(2)*deg2rad)**3.
123 #ifdef ALLOW_AUTODIFF_TAMC
124 CADJ STORE T_var(:) = comlev1_bibj, key=iebmkey, byte=isbyte
125 #endif
126
127 c----------------------------------------
128 c Southern hemisphere:
129 c----------------------------------------
130 T2(1) = 2.*(TtS - TmlS)*T_var(1)*T_var(2)/
131 < (T_var(3)*T_var(2) - T_var(4)*T_var(1))
132 T0(1) = TtS - 0.5*T2(1)*((T_var(3)/T_var(1)) - 1.)
133 c----------------------------------------
134 c Northern hemisphere
135 c----------------------------------------
136 T2(2) = 2.*(TtN - TmlN)*T_var(1)*T_var(2)/
137 < (T_var(3)*T_var(2) - T_var(4)*T_var(1))
138 T0(2) = TtN - 0.5*T2(2)*((T_var(3)/T_var(1)) - 1.)
139 c-----------------------------------------
140 c Temperature at 35 N/S
141 c-----------------------------------------
142 DO no_so = 1,2
143 T35(no_so)= T0(no_so) +
144 < T2(no_so)*0.5*
145 < ((3.*SIN(lat(2)*deg2rad)**2. - 1.))
146 ENDDO
147 c-----------------------------------------
148 c Temperature gradient at 35 N/S
149 c-----------------------------------------
150 DO no_so = 1, 2
151 DTDy35(no_so) = 3.*T2(no_so)*
152 < SIN(lat(2)*deg2rad)/rSphere
153 ENDDO
154 c-----------------------------------------------------------
155 c Magnitude of the heat and moisture transport at 35 N/S
156 c-----------------------------------------------------------
157
158 #ifdef ALLOW_AUTODIFF_TAMC
159 CADJ STORE T35(:) = comlev1_bibj, key=iebmkey, byte=isbyte
160 CADJ STORE DTDy35(:) = comlev1_bibj, key=iebmkey, byte=isbyte
161 #endif
162
163 DO no_so = 1, 2
164 IF ( DTDy35(no_so).NE.0. .AND. T35(no_so).NE.0. ) THEN
165 gamma = -T35(no_so)*beta*Hw*Nw*Nw/
166 < (gravity*f0*DTDy35(no_so))
167 kappa = Hw/(1 + gamma)
168 De = Hw/(0.48 + 1.48*gamma)
169 C = 0.6*gravity*kappa*kappa*Nw/
170 < (Tw*f0*f0)
171 Cs = rho_air*cp*C*
172 < (1/(1/Hw+1/De) - 1/(1/Hw+1/De+1/dz))
173 Cf = htil*2.97e12*C/(T35(no_so)**3)*(
174 < 1/(1/De + (5420*tau /(T35(no_so)**2)))
175 < - 1/(1/De+5420*tau/(T35(no_so)**2)+1/dz))
176 Cl = Cf*lv
177 Hd35(no_so) = 2.*PI*rSphere*COS(lat(2)*deg2rad)
178 < *(Cs + Cl*exp(-5420./T35(no_so)))
179 < *(abs(DTDy35(no_so))**trans_eff)
180 Fw35(no_so) = 2.*PI*rSphere*COS(lat(2)*deg2rad)
181 < *(abs(DTDy35(no_so))**trans_eff)
182 < *Cf*exp(-5420./T35(no_so))
183 ELSE
184 Hd35(no_so) = 0.
185 Fw35(no_so) = 0.
186 ENDIF
187 ENDDO
188 c
189 Fw35(1) = 929944128.
190 Fw35(2) = 678148032.
191 c
192 #ifdef EBM_VERSION_1BASIN
193 c Fw35(2) = 0.7*Fw35(2)
194 #else
195 Hd35(2) = 1.6*Hd35(2)
196 #endif
197 c======================================================
198 c Calculation of latitudinal profiles
199 c======================================================
200 c
201 DO j=1,sNy
202 DO i=1,sNx
203 C sin(lat)
204 S(i,j,bj) = sin(yC(i,j,bi,bj)*deg2rad)
205 C setup Legendre polynomials and derivatives
206 P2(i,j,bj) = 0.5*(3.*S(i,j,bj)**2 - 1.)
207 P4(i,j,bj) = 0.12*(35.*S(i,j,bj)**4 - 30.*S(i,j,bj)**2 + 3.)
208 ENDDO
209 ENDDO
210 #ifdef ALLOW_AUTODIFF_TAMC
211 CADJ STORE S(:,:,bj) = comlev1_bibj, key=iebmkey, byte=isbyte
212 CADJ STORE P2(:,:,bj) = comlev1_bibj, key=iebmkey, byte=isbyte
213 CADJ STORE P4(:,:,bj) = comlev1_bibj, key=iebmkey, byte=isbyte
214 #endif
215 c
216 DO j=1,sNy
217 DO i=1,sNx
218
219 IF (yC(i,j,bi,bj) .LT. 0.) THEN
220 no_so = 1
221 ELSE
222 no_so = 2
223 ENDIF
224 c net shortwave
225 SW(j,bj) = 0.25*Q0*(1 + Q2*P2(i,j,bj))*
226 < (1 - A0 - A2*P2(i,j,bj) - A4*P4(i,j,bj) )
227 c temperature
228 T(j,bj) = T0(no_so) + T2(no_so)*P2(i,j,bj)
229 c net longwave
230 LW(j,bj) = LW0 + LW1*(T(j,bj)-t_mlt)
231 c climate change run, the parameter to change is DLW
232 #ifdef EBM_CLIMATE_CHANGE
233 LW(j,bj) = LW(j,bj) -
234 < (myTime-startTime)*3.215e-8*DLW
235 c < - 6.0
236 c < *75.0*0.0474*
237 c < (-2.62*S(i,j,bj)**8 + 0.73*S(i,j,bj)**7 +
238 c < 4.82*S(i,j,bj)**6 -
239 c < 1.12*S(i,j,bj)**5 - 2.69*S(i,j,bj)**4 + 0.47*S(i,j,bj)**3 +
240 c < 0.51*S(i,j,bj)**2 - 0.05*S(i,j,bj)**1 + 0.17)
241 #endif
242 c fluxes at ocean/atmosphere interface
243 c Heat Flux = -Div(atmospheric heat transport) + SW - LW
244 #ifdef EBM_VERSION_1BASIN
245 Qnet(i,j,bi,bj) = -1.0*( SW(j,bj) - LW(j,bj) -
246 < Hd35(no_so)*(
247 < 0.000728e4 - 0.00678e4*S(i,j,bj) +
248 < 0.0955e4*S(i,j,bj)**2 + 0.0769e4*S(i,j,bj)**3 -
249 < 0.8508e4*S(i,j,bj)**4 - 0.3581e4*S(i,j,bj)**5 +
250 < 2.9240e4*S(i,j,bj)**6 + 0.8311e4*S(i,j,bj)**7 -
251 < 4.9548e4*S(i,j,bj)**8 - 0.8808e4*S(i,j,bj)**9 +
252 < 4.0644e4*S(i,j,bj)**10 +0.3409e4*S(i,j,bj)**11 -
253 < 1.2893e4*S(i,j,bj)**12 )
254 < /(2*PI*rSphere*rSphere*25.0) )
255 c Qnet(i,j,bi,bj) = -1.0*( SW(j,bj) - LW(j,bj) -
256 c < 0.5*Hd35(no_so)*(3.054e1 - 3.763e1*S(i,j,bj) +
257 c < 1.892e2*S(i,j,bj)**2 + 3.041e2*S(i,j,bj)**3 -
258 c < 1.540e3*S(i,j,bj)**4 - 9.586e2*S(i,j,bj)**5 +
259 c < 2.939e3*S(i,j,bj)**6 + 1.219e3*S(i,j,bj)**7 -
260 c < 2.550e3*S(i,j,bj)**8 - 5.396e2*S(i,j,bj)**9 +
261 c < 8.119e2*S(i,j,bj)**10)
262 c < /(2*PI*rSphere*rSphere*22.3) )
263 #else
264 IF (ReCountX(j,bj) .GT. 0.) THEN
265 Qnet(i,j,bi,bj) = (-90./ReCountX(j,bj))*
266 < ( SW(j,bj) - LW(j,bj) -
267 < Hd35(no_so)*(3.054e1 - 3.763e1*S(i,j,bj) +
268 < 1.892e2*S(i,j,bj)**2 + 3.041e2*S(i,j,bj)**3 -
269 < 1.540e3*S(i,j,bj)**4 - 9.586e2*S(i,j,bj)**5 +
270 < 2.939e3*S(i,j,bj)**6 + 1.219e3*S(i,j,bj)**7 -
271 < 2.550e3*S(i,j,bj)**8 - 5.396e2*S(i,j,bj)**9 +
272 < 8.119e2*S(i,j,bj)**10)
273 < /(2*PI*rSphere*rSphere*22.3) )
274 ELSE
275 Qnet(i,j,bi,bj) = 0.
276 ENDIF
277 #endif
278 c Freshwater Flux = Div(atmospheric moisture transport)
279 c--- conversion of E-P from kg/(s m^2) -> m/s -> psu/s: 1e-3*35/delZ(1)
280 #ifdef EBM_VERSION_1BASIN
281 EmPmR(i,j,bi,bj) = -1.e-3*Fw35(no_so)
282 < *(-0.8454e5*S(i,j,bj)**14 + 0.5367e5*S(i,j,bj)**13
283 < +3.3173e5*S(i,j,bj)**12 - 1.8965e5*S(i,j,bj)**11
284 < -5.1701e5*S(i,j,bj)**10
285 < +2.6240e5*S(i,j,bj)**9 + 4.077e5*S(i,j,bj)**8
286 < -1.791e5*S(i,j,bj)**7
287 < -1.7231e5*S(i,j,bj)**6 + 0.6229e5*S(i,j,bj)**5
288 < +0.3824e5*S(i,j,bj)**4
289 < -0.1017e5*S(i,j,bj)**3 - 0.0387e5*S(i,j,bj)**2
290 < +0.00562e5*S(i,j,bj) + 0.0007743e5)
291 < /(2.0*12.0*PI*rSphere*rSphere)
292 c EmPmR(i,j,bi,bj) = 1.e-3*Fw35(no_so)
293 c < *(50.0 + 228.0*S(i,j,bj) -1.593e3*S(i,j,bj)**2
294 c < - 2.127e3*S(i,j,bj)**3 + 7.3e3*S(i,j,bj)**4
295 c < + 5.799e3*S(i,j,bj)**5 - 1.232e4*S(i,j,bj)**6
296 c < - 6.389e3*S(i,j,bj)**7 + 9.123e3*S(i,j,bj)**8
297 c < + 2.495e3*S(i,j,bj)**9 - 2.567e3*S(i,j,bj)**10)
298 c < /(2*PI*rSphere*rSphere*15.0)
299 #else
300 IF (yC(i,j,bi,bj) .LT. -40.) THEN
301 c-- Southern Hemisphere
302 EmPmR(i,j,bi,bj) = -1.e-3*(Fw35(no_so)*
303 < (-6.5 + 35.3 + 71.7*S(i,j,bj)
304 < - 1336.3*S(i,j,bj)**2 - 425.8*S(i,j,bj)**3
305 < + 5434.8*S(i,j,bj)**4 + 707.9*S(i,j,bj)**5
306 < - 6987.7*S(i,j,bj)**6 - 360.4*S(i,j,bj)**7
307 < + 2855.0*S(i,j,bj)**8)
308 < /(2*PI*rSphere*rSphere*18.0))
309 ELSE
310 c-- Atlantic
311 IF (xC(i,j,bi,bj) .GT. 284.
312 < .OR. xC(i,j,bi,bj) .LT. 28.) THEN
313 EmPmR(i,j,bi,bj) = -1.e-3*(Fw35(no_so)*
314 < (-6.5 -2.878 + 3.157e2*S(i,j,bj) -
315 < 2.388e3*S(i,j,bj)**2 - 4.101e3*S(i,j,bj)**3 +
316 < 1.963e4*S(i,j,bj)**4 + 1.534e4*S(i,j,bj)**5 -
317 < 6.556e4*S(i,j,bj)**6 - 2.478e4*S(i,j,bj)**7 +
318 < 1.083e5*S(i,j,bj)**8 + 1.85e4*S(i,j,bj)**9 -
319 < 8.703e4*S(i,j,bj)**10 - 5.276e3*S(i,j,bj)**11 +
320 < 2.703e4*S(i,j,bj)**12)
321 < /(2*PI*rSphere*rSphere*12.0))
322 ELSE
323 c-- Pacific
324 EmPmR(i,j,bi,bj) = -1.e-3*(Fw35(no_so)
325 < *(-6.5 +51.89 + 4.916e2*S(i,j,bj) -
326 < 1.041e3*S(i,j,bj)**2 - 7.546e3*S(i,j,bj)**3 +
327 < 2.335e3*S(i,j,bj)**4 + 3.449e4*S(i,j,bj)**5 +
328 < 6.702e3*S(i,j,bj)**6 - 6.601e4*S(i,j,bj)**7 -
329 < 2.594e4*S(i,j,bj)**8 + 5.652e4*S(i,j,bj)**9 +
330 < 2.738e4*S(i,j,bj)**10 - 1.795e4*S(i,j,bj)**11 -
331 < 9.486e3*S(i,j,bj)**12)
332 < /(2*PI*rSphere*rSphere*12.0))
333 ENDIF
334 ENDIF
335 #endif
336 EmPmR(i,j,bi,bj) = EmPmR(i,j,bi,bj)*rhoConstFresh
337 ENDDO
338 ENDDO
339 ENDDO
340 ENDDO
341
342 _EXCH_XY_R4(Qnet , myThid )
343 _EXCH_XY_R4(EmPmR , myThid )
344
345
346 C CALL PLOT_FIELD_XYRS( Qnet, 'Qnet' , 1, myThid )
347 C CALL PLOT_FIELD_XYRS( EmPmR, 'EmPmR' , 1, myThid )
348
349 cph end of IF TOP_LAYER
350 cph ENDIF
351
352 #endif /* ALLOW_EBM */
353
354 RETURN
355 END

  ViewVC Help
Powered by ViewVC 1.1.22