/[MITgcm]/MITgcm/pkg/ebm/ebm_atmosphere.F
ViewVC logotype

Contents of /MITgcm/pkg/ebm/ebm_atmosphere.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (show annotations) (download)
Fri May 14 21:10:34 2004 UTC (20 years, 4 months ago) by heimbach
Branch: MAIN
CVS Tags: checkpoint53b_post
Commiting new energy balance model to repository
o package is pkg/ebm
o verif. is verification/global_ocean_ebm
o references are in ebm_driver.F
Will need long integration testing.

1 C $Header: $
2 C $Name: $
3
4 #include "EBM_OPTIONS.h"
5
6 SUBROUTINE EBM_ATMOSPHERE ( myTime, myiter, myThid )
7
8 C |==========================================================|
9 C | S/R CALCULATE FORCING FROM ENERGY AND MOISTURE |
10 C | BALANCE ATMOSPHERE |
11 C |==========================================================|
12 C References:
13 C * X. Wang, P. Stone and J. Marotzke, 1999:
14 C Global thermohaline circulation. Part I:
15 C Sensitivity to atmospheric moisture transport.
16 C J. Climate 12(1), 71-82
17 C * X. Wang, P. Stone and J. Marotzke, 1999:
18 C Global thermohaline circulation. Part II:
19 C Sensitivity with interactive transport.
20 C J. Climate 12(1), 83-91
21 C * M. Nakamura, P. Stone and J. Marotzke, 1994:
22 C Destabilization of the thermohaline circulation
23 C by atmospheric eddy transports.
24 C J. Climate 7(12), 1870-1882
25
26 IMPLICIT NONE
27
28 C === Global variables ===
29 #include "SIZE.h"
30 #include "EEPARAMS.h"
31 #include "PARAMS.h"
32 #include "FFIELDS.h"
33 #include "DYNVARS.h"
34 #include "GRID.h"
35 #ifdef ALLOW_EBM
36 # include "EBM.h"
37 #endif
38
39 C === Routine arguments ===
40 C myThid - Instance number for this innvocation of CALC_FORCING
41 INTEGER myThid
42 INTEGER myIter
43 _RL myTime
44 CEndOfInterface
45
46 #ifdef ALLOW_EBM
47
48 C == Local variables ==
49 _RL Dy
50 _RL ReCountX(1-OLy:sNy+OLy)
51 INTEGER bi, bj
52 INTEGER i, j
53 INTEGER no_so
54 LOGICAL TOP_LAYER
55
56 C-- Top layer only
57 cph TOP_LAYER = k .EQ. 1
58
59 cph IF ( TOP_LAYER ) THEN
60
61 DO bj=myByLo(myThid),myByHi(myThid)
62 DO bi=myBxLo(myThid),myBxHi(myThid)
63
64 DO j=1-OLy,sNy+OLy
65 S(j) = 0.0
66 P2(j) = 0.0
67 P4(j) = 0.0
68 SW(j) = 0.0
69 LW(j) = 0.0
70 Hd(j) = 0.0
71 Fw(j) = 0.0
72 T(j) = 0.0
73 ReCountX(j) = 0.0
74 ENDDO
75
76 print *, 'SH', TmlS-t_mlt, TtS-t_mlt
77 print *, 'NH', TmlN-t_mlt, TtN-t_mlt
78
79 C-- account for ice (can absorb heat on an annual averaged basis)
80 C-- Greenland in Northern Hemisphere, Antarctica in Southern
81 DO j = 1-OLy,sNy+OLy
82 ReCountX(j) = CountX(j)
83 IF (yC(1,j,bi,bj) .LE. -62.0) THEN
84 ReCountX(j) = 90.
85 ELSE IF (yC(1,j,bi,bj) .EQ. 74.0) THEN
86 ReCountX(j) = CountX(j) + 9.0
87 ELSE IF (yC(1,j,bi,bj) .EQ. 70.0) THEN
88 ReCountX(j) = CountX(j) + 8.0
89 ELSE IF (yC(1,j,bi,bj) .EQ. 66.0) THEN
90 ReCountX(j) = CountX(j) + 5.0
91 ELSE IF (yC(1,j,bi,bj) .EQ. 62.0) THEN
92 ReCountX(j) = CountX(j) + 1.0
93 ENDIF
94 ENDDO
95
96
97 c=====================================================
98 c Fit area-weighed averaged SST north/south of 34
99 c degree to second Legendre polynomial:
100 c=======================================================
101 T_var(1) = SIN(lat(2)*deg2rad) - SIN(lat(1)*deg2rad)
102 T_var(2) = SIN(lat(3)*deg2rad) - SIN(lat(2)*deg2rad)
103 T_var(3) = SIN(lat(2)*deg2rad)**3. - SIN(lat(1)*deg2rad)**3.
104 T_var(4) = SIN(lat(3)*deg2rad)**3. - SIN(lat(2)*deg2rad)**3.
105
106 c----------------------------------------
107 c Southern hemisphere:
108 c----------------------------------------
109 T2(1) = 2.*(TtS - TmlS)*T_var(1)*T_var(2)/
110 < (T_var(3)*T_var(2) - T_var(4)*T_var(1))
111 T0(1) = TtS - 0.5*T2(1)*((T_var(3)/T_var(1)) - 1.)
112 c----------------------------------------
113 c Northern hemisphere
114 c----------------------------------------
115 T2(2) = 2.*(TtN - TmlN)*T_var(1)*T_var(2)/
116 < (T_var(3)*T_var(2) - T_var(4)*T_var(1))
117 T0(2) = TtN - 0.5*T2(2)*((T_var(3)/T_var(1)) - 1.)
118 c-----------------------------------------
119 c Temperature at 35 N/S
120 c-----------------------------------------
121 DO no_so = 1,2
122 T35(no_so)= T0(no_so) +
123 < T2(no_so)*0.5*
124 < ((3.*SIN(lat(2)*deg2rad)**2. - 1.))
125 ENDDO
126 c-----------------------------------------
127 c Temperature gradient at 35 N/S
128 c-----------------------------------------
129 DO no_so = 1, 2
130 DTDy35(no_so) = 3.*T2(no_so)*
131 < SIN(lat(2)*deg2rad)/rSphere
132 ENDDO
133 c-----------------------------------------------------------
134 c Magnitude of the heat and moisture transport at 35 N/S
135 c-----------------------------------------------------------
136
137
138 DO no_so = 1, 2
139 gamma = -T35(no_so)*beta*Hw*Nw*Nw/
140 < (gravity*f0*DTDy35(no_so))
141 kappa = Hw/(1 + gamma)
142 De = Hw/(0.48 + 1.48*gamma)
143 C = 0.6*gravity*kappa*kappa*Nw/
144 < (Tw*f0*f0)
145 Cs = rho_air*cp*C*
146 < (1/(1/Hw+1/De) - 1/(1/Hw+1/De+1/dz))
147 Cf = htil*2.97e12*C/(T35(no_so)**3)*(
148 < 1/(1/De + (5420*tau /(T35(no_so)**2)))
149 < - 1/(1/De+5420*tau/(T35(no_so)**2)+1/dz))
150 Cl = Cf*lv
151 Hd35(no_so) = 2.*PI*rSphere*COS(lat(2)*deg2rad)
152 < *(Cs + Cl*exp(-5420./T35(no_so)))
153 < *(abs(DTDy35(no_so))**trans_eff)
154 Fw35(no_so) = 2.*PI*rSphere*COS(lat(2)*deg2rad)
155 < *(abs(DTDy35(no_so))**trans_eff)
156 < *Cf*exp(-5420./T35(no_so))
157 c write(0,*) no_so, Hd35(no_so), Fw35(no_so)
158 ENDDO
159 Fw35(1) = 929944128.
160 Fw35(2) = 678148032.
161 #ifdef EBM_VERSION_1BASIN
162 c Fw35(2) = 0.7*Fw35(2)
163 #else
164 Hd35(2) = 1.6*Hd35(2)
165 #endif
166 c======================================================
167 c Calculation of latitudinal profiles
168 c======================================================
169 c
170 DO j=1-OLy,sNy+OLy
171 DO i=1-Olx,sNx+Olx
172
173 IF (yC(i,j,bi,bj) .LT. 0.) THEN
174 no_so = 1
175 ELSE
176 no_so = 2
177 ENDIF
178 C sin(lat)
179 S(j) = sin(yC(i,j,bi,bj)*deg2rad)
180 C setup Legendre polynomials and derivatives
181 P2(j) = 0.5*(3.*S(j)**2 - 1.)
182 P4(j) = 0.12*(35.*S(j)**4 - 30.*S(j)**2 + 3.)
183 c net shortwave
184 SW(j) = 0.25*Q0*(1 + Q2*P2(j))*
185 < (1 - A0 - A2*P2(j) - A4*P4(j) )
186 c temperature
187 T(j) = T0(no_so) + T2(no_so)*P2(j)
188 c net longwave
189 LW(j) = LW0 + LW1*(T(j)-t_mlt)
190 c climate change run, the parameter to change is DLW
191 #ifdef EBM_CLIMATE_CHANGE
192 LW(j) = LW(j) -
193 < (myTime-startTime)*3.215e-8*DLW
194 c < - 6.0
195 c < *75.0*0.0474*
196 c < (-2.62*S(j)**8 + 0.73*S(j)**7 +
197 c < 4.82*S(j)**6 -
198 c < 1.12*S(j)**5 - 2.69*S(j)**4 + 0.47*S(j)**3 +
199 c < 0.51*S(j)**2 - 0.05*S(j)**1 + 0.17)
200 #endif
201 c fluxes at ocean/atmosphere interface
202 c Heat Flux = -Div(atmospheric heat transport) + SW - LW
203 #ifdef EBM_VERSION_1BASIN
204 Qnet(i,j,bi,bj) = -1.0*( SW(j) - LW(j) -
205 < Hd35(no_so)*(
206 < 0.000728e4 - 0.00678e4*S(j) +
207 < 0.0955e4*S(j)**2 + 0.0769e4*S(j)**3 -
208 < 0.8508e4*S(j)**4 - 0.3581e4*S(j)**5 +
209 < 2.9240e4*S(j)**6 + 0.8311e4*S(j)**7 -
210 < 4.9548e4*S(j)**8 - 0.8808e4*S(j)**9 +
211 < 4.0644e4*S(j)**10 +0.3409e4*S(j)**11 -
212 < 1.2893e4*S(j)**12 )
213 < /(2*PI*rSphere*rSphere*25.0) )
214 c Qnet(i,j,bi,bj) = -1.0*( SW(j) - LW(j) -
215 c < 0.5*Hd35(no_so)*(3.054e1 - 3.763e1*S(j) +
216 c < 1.892e2*S(j)**2 + 3.041e2*S(j)**3 -
217 c < 1.540e3*S(j)**4 - 9.586e2*S(j)**5 +
218 c < 2.939e3*S(j)**6 + 1.219e3*S(j)**7 -
219 c < 2.550e3*S(j)**8 - 5.396e2*S(j)**9 +
220 c < 8.119e2*S(j)**10)
221 c < /(2*PI*rSphere*rSphere*22.3) )
222 #else
223 IF (ReCountX(j) .GT. 0.) THEN
224 Qnet(i,j,bi,bj) = (-90./ReCountX(j))*
225 < ( SW(j) - LW(j) -
226 < Hd35(no_so)*(3.054e1 - 3.763e1*S(j) +
227 < 1.892e2*S(j)**2 + 3.041e2*S(j)**3 -
228 < 1.540e3*S(j)**4 - 9.586e2*S(j)**5 +
229 < 2.939e3*S(j)**6 + 1.219e3*S(j)**7 -
230 < 2.550e3*S(j)**8 - 5.396e2*S(j)**9 +
231 < 8.119e2*S(j)**10)
232 < /(2*PI*rSphere*rSphere*22.3) )
233 ELSE
234 Qnet(i,j,bi,bj) = 0.
235 ENDIF
236 #endif
237 c Freshwater Flux = Div(atmospheric moisture transport)
238 c--- conversion of E-P from kg/(s m^2) -> m/s -> psu/s: 1e-3*35/delZ(1)
239 #ifdef EBM_VERSION_1BASIN
240 EmPmR(i,j,bi,bj) = -1.e-3*Fw35(no_so)
241 < *(-0.8454e5*S(j)**14 + 0.5367e5*S(j)**13
242 < +3.3173e5*S(j)**12 - 1.8965e5*S(j)**11 - 5.1701e5*S(j)**10
243 < +2.6240e5*S(j)**9 + 4.077e5*S(j)**8 - 1.791e5*S(j)**7
244 < -1.7231e5*S(j)**6 + 0.6229e5*S(j)**5 + 0.3824e5*S(j)**4
245 < -0.1017e5*S(j)**3 - 0.0387e5*S(j)**2
246 < +0.00562e5*S(j) + 0.0007743e5)
247 < /(2.0*12.0*PI*rSphere*rSphere)
248 c EmPmR(i,j,bi,bj) = 1.e-3*Fw35(no_so)
249 c < *(50.0 + 228.0*S(j) -1.593e3*S(j)**2
250 c < - 2.127e3*S(j)**3 + 7.3e3*S(j)**4
251 c < + 5.799e3*S(j)**5 - 1.232e4*S(j)**6
252 c < - 6.389e3*S(j)**7 + 9.123e3*S(j)**8
253 c < + 2.495e3*S(j)**9 - 2.567e3*S(j)**10)
254 c < /(2*PI*rSphere*rSphere*15.0)
255 #else
256 IF (yC(i,j,bi,bj) .LT. -40.) THEN
257 c-- Southern Hemisphere
258 EmPmR(i,j,bi,bj) = -1.e-3*(Fw35(no_so)*
259 < (-6.5 + 35.3 + 71.7*S(j)
260 < - 1336.3*S(j)**2 - 425.8*S(j)**3
261 < + 5434.8*S(j)**4 + 707.9*S(j)**5
262 < - 6987.7*S(j)**6 - 360.4*S(j)**7
263 < + 2855.0*S(j)**8)
264 < /(2*PI*rSphere*rSphere*18.0))
265 ELSE
266 c-- Atlantic
267 IF (xC(i,j,bi,bj) .GT. 284.
268 < .OR. xC(i,j,bi,bj) .LT. 28.) THEN
269 EmPmR(i,j,bi,bj) = -1.e-3*(Fw35(no_so)*
270 < (-6.5 -2.878 + 3.157e2*S(j) -
271 < 2.388e3*S(j)**2 - 4.101e3*S(j)**3 +
272 < 1.963e4*S(j)**4 + 1.534e4*S(j)**5 -
273 < 6.556e4*S(j)**6 - 2.478e4*S(j)**7 +
274 < 1.083e5*S(j)**8 + 1.85e4*S(j)**9 -
275 < 8.703e4*S(j)**10 - 5.276e3*S(j)**11 +
276 < 2.703e4*S(j)**12)
277 < /(2*PI*rSphere*rSphere*12.0))
278 ELSE
279 c-- Pacific
280 EmPmR(i,j,bi,bj) = -1.e-3*(Fw35(no_so)
281 < *(-6.5 +51.89 + 4.916e2*S(j) -
282 < 1.041e3*S(j)**2 - 7.546e3*S(j)**3 +
283 < 2.335e3*S(j)**4 + 3.449e4*S(j)**5 +
284 < 6.702e3*S(j)**6 - 6.601e4*S(j)**7 -
285 < 2.594e4*S(j)**8 + 5.652e4*S(j)**9 +
286 < 2.738e4*S(j)**10 - 1.795e4*S(j)**11 -
287 < 9.486e3*S(j)**12)
288 < /(2*PI*rSphere*rSphere*12.0))
289 ENDIF
290 ENDIF
291 #endif
292 ENDDO
293 ENDDO
294 ENDDO
295 ENDDO
296
297 C CALL PLOT_FIELD_XYRS( Qnet, 'Qnet' , 1, myThid )
298 C CALL PLOT_FIELD_XYRS( EmPmR, 'EmPmR' , 1, myThid )
299
300 cph end of IF TOP_LAYER
301 cph ENDIF
302
303 #endif /* ALLOW_EBM */
304
305 END
306
307
308
309
310

  ViewVC Help
Powered by ViewVC 1.1.22