| 1 |
heimbach |
1.1 |
C $Header: $ |
| 2 |
|
|
C $Name: $ |
| 3 |
|
|
|
| 4 |
|
|
#include "EBM_OPTIONS.h" |
| 5 |
|
|
|
| 6 |
|
|
SUBROUTINE EBM_ATMOSPHERE ( myTime, myiter, myThid ) |
| 7 |
|
|
|
| 8 |
|
|
C |==========================================================| |
| 9 |
|
|
C | S/R CALCULATE FORCING FROM ENERGY AND MOISTURE | |
| 10 |
|
|
C | BALANCE ATMOSPHERE | |
| 11 |
|
|
C |==========================================================| |
| 12 |
|
|
C References: |
| 13 |
|
|
C * X. Wang, P. Stone and J. Marotzke, 1999: |
| 14 |
|
|
C Global thermohaline circulation. Part I: |
| 15 |
|
|
C Sensitivity to atmospheric moisture transport. |
| 16 |
|
|
C J. Climate 12(1), 71-82 |
| 17 |
|
|
C * X. Wang, P. Stone and J. Marotzke, 1999: |
| 18 |
|
|
C Global thermohaline circulation. Part II: |
| 19 |
|
|
C Sensitivity with interactive transport. |
| 20 |
|
|
C J. Climate 12(1), 83-91 |
| 21 |
|
|
C * M. Nakamura, P. Stone and J. Marotzke, 1994: |
| 22 |
|
|
C Destabilization of the thermohaline circulation |
| 23 |
|
|
C by atmospheric eddy transports. |
| 24 |
|
|
C J. Climate 7(12), 1870-1882 |
| 25 |
|
|
|
| 26 |
|
|
IMPLICIT NONE |
| 27 |
|
|
|
| 28 |
|
|
C === Global variables === |
| 29 |
|
|
#include "SIZE.h" |
| 30 |
|
|
#include "EEPARAMS.h" |
| 31 |
|
|
#include "PARAMS.h" |
| 32 |
|
|
#include "FFIELDS.h" |
| 33 |
|
|
#include "DYNVARS.h" |
| 34 |
|
|
#include "GRID.h" |
| 35 |
|
|
#ifdef ALLOW_EBM |
| 36 |
|
|
# include "EBM.h" |
| 37 |
|
|
#endif |
| 38 |
|
|
|
| 39 |
|
|
C === Routine arguments === |
| 40 |
|
|
C myThid - Instance number for this innvocation of CALC_FORCING |
| 41 |
|
|
INTEGER myThid |
| 42 |
|
|
INTEGER myIter |
| 43 |
|
|
_RL myTime |
| 44 |
|
|
CEndOfInterface |
| 45 |
|
|
|
| 46 |
|
|
#ifdef ALLOW_EBM |
| 47 |
|
|
|
| 48 |
|
|
C == Local variables == |
| 49 |
|
|
_RL Dy |
| 50 |
|
|
_RL ReCountX(1-OLy:sNy+OLy) |
| 51 |
|
|
INTEGER bi, bj |
| 52 |
|
|
INTEGER i, j |
| 53 |
|
|
INTEGER no_so |
| 54 |
|
|
LOGICAL TOP_LAYER |
| 55 |
|
|
|
| 56 |
|
|
C-- Top layer only |
| 57 |
|
|
cph TOP_LAYER = k .EQ. 1 |
| 58 |
|
|
|
| 59 |
|
|
cph IF ( TOP_LAYER ) THEN |
| 60 |
|
|
|
| 61 |
|
|
DO bj=myByLo(myThid),myByHi(myThid) |
| 62 |
|
|
DO bi=myBxLo(myThid),myBxHi(myThid) |
| 63 |
|
|
|
| 64 |
|
|
DO j=1-OLy,sNy+OLy |
| 65 |
|
|
S(j) = 0.0 |
| 66 |
|
|
P2(j) = 0.0 |
| 67 |
|
|
P4(j) = 0.0 |
| 68 |
|
|
SW(j) = 0.0 |
| 69 |
|
|
LW(j) = 0.0 |
| 70 |
|
|
Hd(j) = 0.0 |
| 71 |
|
|
Fw(j) = 0.0 |
| 72 |
|
|
T(j) = 0.0 |
| 73 |
|
|
ReCountX(j) = 0.0 |
| 74 |
|
|
ENDDO |
| 75 |
|
|
|
| 76 |
|
|
print *, 'SH', TmlS-t_mlt, TtS-t_mlt |
| 77 |
|
|
print *, 'NH', TmlN-t_mlt, TtN-t_mlt |
| 78 |
|
|
|
| 79 |
|
|
C-- account for ice (can absorb heat on an annual averaged basis) |
| 80 |
|
|
C-- Greenland in Northern Hemisphere, Antarctica in Southern |
| 81 |
|
|
DO j = 1-OLy,sNy+OLy |
| 82 |
|
|
ReCountX(j) = CountX(j) |
| 83 |
|
|
IF (yC(1,j,bi,bj) .LE. -62.0) THEN |
| 84 |
|
|
ReCountX(j) = 90. |
| 85 |
|
|
ELSE IF (yC(1,j,bi,bj) .EQ. 74.0) THEN |
| 86 |
|
|
ReCountX(j) = CountX(j) + 9.0 |
| 87 |
|
|
ELSE IF (yC(1,j,bi,bj) .EQ. 70.0) THEN |
| 88 |
|
|
ReCountX(j) = CountX(j) + 8.0 |
| 89 |
|
|
ELSE IF (yC(1,j,bi,bj) .EQ. 66.0) THEN |
| 90 |
|
|
ReCountX(j) = CountX(j) + 5.0 |
| 91 |
|
|
ELSE IF (yC(1,j,bi,bj) .EQ. 62.0) THEN |
| 92 |
|
|
ReCountX(j) = CountX(j) + 1.0 |
| 93 |
|
|
ENDIF |
| 94 |
|
|
ENDDO |
| 95 |
|
|
|
| 96 |
|
|
|
| 97 |
|
|
c===================================================== |
| 98 |
|
|
c Fit area-weighed averaged SST north/south of 34 |
| 99 |
|
|
c degree to second Legendre polynomial: |
| 100 |
|
|
c======================================================= |
| 101 |
|
|
T_var(1) = SIN(lat(2)*deg2rad) - SIN(lat(1)*deg2rad) |
| 102 |
|
|
T_var(2) = SIN(lat(3)*deg2rad) - SIN(lat(2)*deg2rad) |
| 103 |
|
|
T_var(3) = SIN(lat(2)*deg2rad)**3. - SIN(lat(1)*deg2rad)**3. |
| 104 |
|
|
T_var(4) = SIN(lat(3)*deg2rad)**3. - SIN(lat(2)*deg2rad)**3. |
| 105 |
|
|
|
| 106 |
|
|
c---------------------------------------- |
| 107 |
|
|
c Southern hemisphere: |
| 108 |
|
|
c---------------------------------------- |
| 109 |
|
|
T2(1) = 2.*(TtS - TmlS)*T_var(1)*T_var(2)/ |
| 110 |
|
|
< (T_var(3)*T_var(2) - T_var(4)*T_var(1)) |
| 111 |
|
|
T0(1) = TtS - 0.5*T2(1)*((T_var(3)/T_var(1)) - 1.) |
| 112 |
|
|
c---------------------------------------- |
| 113 |
|
|
c Northern hemisphere |
| 114 |
|
|
c---------------------------------------- |
| 115 |
|
|
T2(2) = 2.*(TtN - TmlN)*T_var(1)*T_var(2)/ |
| 116 |
|
|
< (T_var(3)*T_var(2) - T_var(4)*T_var(1)) |
| 117 |
|
|
T0(2) = TtN - 0.5*T2(2)*((T_var(3)/T_var(1)) - 1.) |
| 118 |
|
|
c----------------------------------------- |
| 119 |
|
|
c Temperature at 35 N/S |
| 120 |
|
|
c----------------------------------------- |
| 121 |
|
|
DO no_so = 1,2 |
| 122 |
|
|
T35(no_so)= T0(no_so) + |
| 123 |
|
|
< T2(no_so)*0.5* |
| 124 |
|
|
< ((3.*SIN(lat(2)*deg2rad)**2. - 1.)) |
| 125 |
|
|
ENDDO |
| 126 |
|
|
c----------------------------------------- |
| 127 |
|
|
c Temperature gradient at 35 N/S |
| 128 |
|
|
c----------------------------------------- |
| 129 |
|
|
DO no_so = 1, 2 |
| 130 |
|
|
DTDy35(no_so) = 3.*T2(no_so)* |
| 131 |
|
|
< SIN(lat(2)*deg2rad)/rSphere |
| 132 |
|
|
ENDDO |
| 133 |
|
|
c----------------------------------------------------------- |
| 134 |
|
|
c Magnitude of the heat and moisture transport at 35 N/S |
| 135 |
|
|
c----------------------------------------------------------- |
| 136 |
|
|
|
| 137 |
|
|
|
| 138 |
|
|
DO no_so = 1, 2 |
| 139 |
|
|
gamma = -T35(no_so)*beta*Hw*Nw*Nw/ |
| 140 |
|
|
< (gravity*f0*DTDy35(no_so)) |
| 141 |
|
|
kappa = Hw/(1 + gamma) |
| 142 |
|
|
De = Hw/(0.48 + 1.48*gamma) |
| 143 |
|
|
C = 0.6*gravity*kappa*kappa*Nw/ |
| 144 |
|
|
< (Tw*f0*f0) |
| 145 |
|
|
Cs = rho_air*cp*C* |
| 146 |
|
|
< (1/(1/Hw+1/De) - 1/(1/Hw+1/De+1/dz)) |
| 147 |
|
|
Cf = htil*2.97e12*C/(T35(no_so)**3)*( |
| 148 |
|
|
< 1/(1/De + (5420*tau /(T35(no_so)**2))) |
| 149 |
|
|
< - 1/(1/De+5420*tau/(T35(no_so)**2)+1/dz)) |
| 150 |
|
|
Cl = Cf*lv |
| 151 |
|
|
Hd35(no_so) = 2.*PI*rSphere*COS(lat(2)*deg2rad) |
| 152 |
|
|
< *(Cs + Cl*exp(-5420./T35(no_so))) |
| 153 |
|
|
< *(abs(DTDy35(no_so))**trans_eff) |
| 154 |
|
|
Fw35(no_so) = 2.*PI*rSphere*COS(lat(2)*deg2rad) |
| 155 |
|
|
< *(abs(DTDy35(no_so))**trans_eff) |
| 156 |
|
|
< *Cf*exp(-5420./T35(no_so)) |
| 157 |
|
|
c write(0,*) no_so, Hd35(no_so), Fw35(no_so) |
| 158 |
|
|
ENDDO |
| 159 |
|
|
Fw35(1) = 929944128. |
| 160 |
|
|
Fw35(2) = 678148032. |
| 161 |
|
|
#ifdef EBM_VERSION_1BASIN |
| 162 |
|
|
c Fw35(2) = 0.7*Fw35(2) |
| 163 |
|
|
#else |
| 164 |
|
|
Hd35(2) = 1.6*Hd35(2) |
| 165 |
|
|
#endif |
| 166 |
|
|
c====================================================== |
| 167 |
|
|
c Calculation of latitudinal profiles |
| 168 |
|
|
c====================================================== |
| 169 |
|
|
c |
| 170 |
|
|
DO j=1-OLy,sNy+OLy |
| 171 |
|
|
DO i=1-Olx,sNx+Olx |
| 172 |
|
|
|
| 173 |
|
|
IF (yC(i,j,bi,bj) .LT. 0.) THEN |
| 174 |
|
|
no_so = 1 |
| 175 |
|
|
ELSE |
| 176 |
|
|
no_so = 2 |
| 177 |
|
|
ENDIF |
| 178 |
|
|
C sin(lat) |
| 179 |
|
|
S(j) = sin(yC(i,j,bi,bj)*deg2rad) |
| 180 |
|
|
C setup Legendre polynomials and derivatives |
| 181 |
|
|
P2(j) = 0.5*(3.*S(j)**2 - 1.) |
| 182 |
|
|
P4(j) = 0.12*(35.*S(j)**4 - 30.*S(j)**2 + 3.) |
| 183 |
|
|
c net shortwave |
| 184 |
|
|
SW(j) = 0.25*Q0*(1 + Q2*P2(j))* |
| 185 |
|
|
< (1 - A0 - A2*P2(j) - A4*P4(j) ) |
| 186 |
|
|
c temperature |
| 187 |
|
|
T(j) = T0(no_so) + T2(no_so)*P2(j) |
| 188 |
|
|
c net longwave |
| 189 |
|
|
LW(j) = LW0 + LW1*(T(j)-t_mlt) |
| 190 |
|
|
c climate change run, the parameter to change is DLW |
| 191 |
|
|
#ifdef EBM_CLIMATE_CHANGE |
| 192 |
|
|
LW(j) = LW(j) - |
| 193 |
|
|
< (myTime-startTime)*3.215e-8*DLW |
| 194 |
|
|
c < - 6.0 |
| 195 |
|
|
c < *75.0*0.0474* |
| 196 |
|
|
c < (-2.62*S(j)**8 + 0.73*S(j)**7 + |
| 197 |
|
|
c < 4.82*S(j)**6 - |
| 198 |
|
|
c < 1.12*S(j)**5 - 2.69*S(j)**4 + 0.47*S(j)**3 + |
| 199 |
|
|
c < 0.51*S(j)**2 - 0.05*S(j)**1 + 0.17) |
| 200 |
|
|
#endif |
| 201 |
|
|
c fluxes at ocean/atmosphere interface |
| 202 |
|
|
c Heat Flux = -Div(atmospheric heat transport) + SW - LW |
| 203 |
|
|
#ifdef EBM_VERSION_1BASIN |
| 204 |
|
|
Qnet(i,j,bi,bj) = -1.0*( SW(j) - LW(j) - |
| 205 |
|
|
< Hd35(no_so)*( |
| 206 |
|
|
< 0.000728e4 - 0.00678e4*S(j) + |
| 207 |
|
|
< 0.0955e4*S(j)**2 + 0.0769e4*S(j)**3 - |
| 208 |
|
|
< 0.8508e4*S(j)**4 - 0.3581e4*S(j)**5 + |
| 209 |
|
|
< 2.9240e4*S(j)**6 + 0.8311e4*S(j)**7 - |
| 210 |
|
|
< 4.9548e4*S(j)**8 - 0.8808e4*S(j)**9 + |
| 211 |
|
|
< 4.0644e4*S(j)**10 +0.3409e4*S(j)**11 - |
| 212 |
|
|
< 1.2893e4*S(j)**12 ) |
| 213 |
|
|
< /(2*PI*rSphere*rSphere*25.0) ) |
| 214 |
|
|
c Qnet(i,j,bi,bj) = -1.0*( SW(j) - LW(j) - |
| 215 |
|
|
c < 0.5*Hd35(no_so)*(3.054e1 - 3.763e1*S(j) + |
| 216 |
|
|
c < 1.892e2*S(j)**2 + 3.041e2*S(j)**3 - |
| 217 |
|
|
c < 1.540e3*S(j)**4 - 9.586e2*S(j)**5 + |
| 218 |
|
|
c < 2.939e3*S(j)**6 + 1.219e3*S(j)**7 - |
| 219 |
|
|
c < 2.550e3*S(j)**8 - 5.396e2*S(j)**9 + |
| 220 |
|
|
c < 8.119e2*S(j)**10) |
| 221 |
|
|
c < /(2*PI*rSphere*rSphere*22.3) ) |
| 222 |
|
|
#else |
| 223 |
|
|
IF (ReCountX(j) .GT. 0.) THEN |
| 224 |
|
|
Qnet(i,j,bi,bj) = (-90./ReCountX(j))* |
| 225 |
|
|
< ( SW(j) - LW(j) - |
| 226 |
|
|
< Hd35(no_so)*(3.054e1 - 3.763e1*S(j) + |
| 227 |
|
|
< 1.892e2*S(j)**2 + 3.041e2*S(j)**3 - |
| 228 |
|
|
< 1.540e3*S(j)**4 - 9.586e2*S(j)**5 + |
| 229 |
|
|
< 2.939e3*S(j)**6 + 1.219e3*S(j)**7 - |
| 230 |
|
|
< 2.550e3*S(j)**8 - 5.396e2*S(j)**9 + |
| 231 |
|
|
< 8.119e2*S(j)**10) |
| 232 |
|
|
< /(2*PI*rSphere*rSphere*22.3) ) |
| 233 |
|
|
ELSE |
| 234 |
|
|
Qnet(i,j,bi,bj) = 0. |
| 235 |
|
|
ENDIF |
| 236 |
|
|
#endif |
| 237 |
|
|
c Freshwater Flux = Div(atmospheric moisture transport) |
| 238 |
|
|
c--- conversion of E-P from kg/(s m^2) -> m/s -> psu/s: 1e-3*35/delZ(1) |
| 239 |
|
|
#ifdef EBM_VERSION_1BASIN |
| 240 |
|
|
EmPmR(i,j,bi,bj) = -1.e-3*Fw35(no_so) |
| 241 |
|
|
< *(-0.8454e5*S(j)**14 + 0.5367e5*S(j)**13 |
| 242 |
|
|
< +3.3173e5*S(j)**12 - 1.8965e5*S(j)**11 - 5.1701e5*S(j)**10 |
| 243 |
|
|
< +2.6240e5*S(j)**9 + 4.077e5*S(j)**8 - 1.791e5*S(j)**7 |
| 244 |
|
|
< -1.7231e5*S(j)**6 + 0.6229e5*S(j)**5 + 0.3824e5*S(j)**4 |
| 245 |
|
|
< -0.1017e5*S(j)**3 - 0.0387e5*S(j)**2 |
| 246 |
|
|
< +0.00562e5*S(j) + 0.0007743e5) |
| 247 |
|
|
< /(2.0*12.0*PI*rSphere*rSphere) |
| 248 |
|
|
c EmPmR(i,j,bi,bj) = 1.e-3*Fw35(no_so) |
| 249 |
|
|
c < *(50.0 + 228.0*S(j) -1.593e3*S(j)**2 |
| 250 |
|
|
c < - 2.127e3*S(j)**3 + 7.3e3*S(j)**4 |
| 251 |
|
|
c < + 5.799e3*S(j)**5 - 1.232e4*S(j)**6 |
| 252 |
|
|
c < - 6.389e3*S(j)**7 + 9.123e3*S(j)**8 |
| 253 |
|
|
c < + 2.495e3*S(j)**9 - 2.567e3*S(j)**10) |
| 254 |
|
|
c < /(2*PI*rSphere*rSphere*15.0) |
| 255 |
|
|
#else |
| 256 |
|
|
IF (yC(i,j,bi,bj) .LT. -40.) THEN |
| 257 |
|
|
c-- Southern Hemisphere |
| 258 |
|
|
EmPmR(i,j,bi,bj) = -1.e-3*(Fw35(no_so)* |
| 259 |
|
|
< (-6.5 + 35.3 + 71.7*S(j) |
| 260 |
|
|
< - 1336.3*S(j)**2 - 425.8*S(j)**3 |
| 261 |
|
|
< + 5434.8*S(j)**4 + 707.9*S(j)**5 |
| 262 |
|
|
< - 6987.7*S(j)**6 - 360.4*S(j)**7 |
| 263 |
|
|
< + 2855.0*S(j)**8) |
| 264 |
|
|
< /(2*PI*rSphere*rSphere*18.0)) |
| 265 |
|
|
ELSE |
| 266 |
|
|
c-- Atlantic |
| 267 |
|
|
IF (xC(i,j,bi,bj) .GT. 284. |
| 268 |
|
|
< .OR. xC(i,j,bi,bj) .LT. 28.) THEN |
| 269 |
|
|
EmPmR(i,j,bi,bj) = -1.e-3*(Fw35(no_so)* |
| 270 |
|
|
< (-6.5 -2.878 + 3.157e2*S(j) - |
| 271 |
|
|
< 2.388e3*S(j)**2 - 4.101e3*S(j)**3 + |
| 272 |
|
|
< 1.963e4*S(j)**4 + 1.534e4*S(j)**5 - |
| 273 |
|
|
< 6.556e4*S(j)**6 - 2.478e4*S(j)**7 + |
| 274 |
|
|
< 1.083e5*S(j)**8 + 1.85e4*S(j)**9 - |
| 275 |
|
|
< 8.703e4*S(j)**10 - 5.276e3*S(j)**11 + |
| 276 |
|
|
< 2.703e4*S(j)**12) |
| 277 |
|
|
< /(2*PI*rSphere*rSphere*12.0)) |
| 278 |
|
|
ELSE |
| 279 |
|
|
c-- Pacific |
| 280 |
|
|
EmPmR(i,j,bi,bj) = -1.e-3*(Fw35(no_so) |
| 281 |
|
|
< *(-6.5 +51.89 + 4.916e2*S(j) - |
| 282 |
|
|
< 1.041e3*S(j)**2 - 7.546e3*S(j)**3 + |
| 283 |
|
|
< 2.335e3*S(j)**4 + 3.449e4*S(j)**5 + |
| 284 |
|
|
< 6.702e3*S(j)**6 - 6.601e4*S(j)**7 - |
| 285 |
|
|
< 2.594e4*S(j)**8 + 5.652e4*S(j)**9 + |
| 286 |
|
|
< 2.738e4*S(j)**10 - 1.795e4*S(j)**11 - |
| 287 |
|
|
< 9.486e3*S(j)**12) |
| 288 |
|
|
< /(2*PI*rSphere*rSphere*12.0)) |
| 289 |
|
|
ENDIF |
| 290 |
|
|
ENDIF |
| 291 |
|
|
#endif |
| 292 |
|
|
ENDDO |
| 293 |
|
|
ENDDO |
| 294 |
|
|
ENDDO |
| 295 |
|
|
ENDDO |
| 296 |
|
|
|
| 297 |
|
|
C CALL PLOT_FIELD_XYRS( Qnet, 'Qnet' , 1, myThid ) |
| 298 |
|
|
C CALL PLOT_FIELD_XYRS( EmPmR, 'EmPmR' , 1, myThid ) |
| 299 |
|
|
|
| 300 |
|
|
cph end of IF TOP_LAYER |
| 301 |
|
|
cph ENDIF |
| 302 |
|
|
|
| 303 |
|
|
#endif /* ALLOW_EBM */ |
| 304 |
|
|
|
| 305 |
|
|
END |
| 306 |
|
|
|
| 307 |
|
|
|
| 308 |
|
|
|
| 309 |
|
|
|
| 310 |
|
|
|