--- MITgcm/pkg/dic/dic_surfforcing.F 2003/10/02 18:30:07 1.2.2.1 +++ MITgcm/pkg/dic/dic_surfforcing.F 2011/05/05 22:23:27 1.27 @@ -1,220 +1,232 @@ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/dic/dic_surfforcing.F,v 1.27 2011/05/05 22:23:27 stephd Exp $ +C $Name: $ + #include "DIC_OPTIONS.h" #include "PTRACERS_OPTIONS.h" -#include "GCHEM_OPTIONS.h" -CStartOfInterFace - SUBROUTINE DIC_SURFFORCING( PTR_CO2 , GDC, +CBOP +C !ROUTINE: DIC_SURFFORCING + +C !INTERFACE: ========================================================== + SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC, I bi,bj,imin,imax,jmin,jmax, I myIter,myTime,myThid) -C /==========================================================\ -C | SUBROUTINE DIC_SURFFORCING | -C | o Calculate the carbon air-sea flux terms | -C | o following external_forcing_dic.F from Mick | -C |==========================================================| - IMPLICIT NONE +C !DESCRIPTION: +C Calculate the carbon air-sea flux terms +C following external_forcing_dic.F (OCMIP run) from Mick -C == GLobal variables == +C !USES: =============================================================== + IMPLICIT NONE #include "SIZE.h" #include "DYNVARS.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "FFIELDS.h" -#include "DIC_ABIOTIC.h" -#ifdef DIC_BIOTIC -#include "PTRACERS.h" -#endif +#include "DIC_VARS.h" -C == Routine arguments == +C !INPUT PARAMETERS: =================================================== +C myThid :: thread number +C myIter :: current timestep +C myTime :: current time +c PTR_CO2 :: DIC tracer field INTEGER myIter, myThid _RL myTime _RL PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) INTEGER iMin,iMax,jMin,jMax, bi, bj +C !OUTPUT PARAMETERS: =================================================== +c GDC :: tendency due to air-sea exchange + _RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + #ifdef ALLOW_PTRACERS -#ifdef DIC_ABIOTIC -C == Local variables == - INTEGER I,J, kLev, it + +C !LOCAL VARIABLES: ==================================================== + INTEGER i,j, kLev C Number of iterations for pCO2 solvers... - INTEGER inewtonmax - INTEGER ibrackmax - INTEGER donewt C Solubility relation coefficients _RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL pisvel(1-OLx:sNx+OLx,1-OLy:sNy+OLy) C local variables for carbon chem _RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL surftemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL surfsalt(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL surfdic(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +#ifdef ALLOW_OLD_VIRTUALFLUX _RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +#endif +CEOP cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc kLev=1 -C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - AtmospCO2(i,j,bi,bj)=278.0d-6 - ENDDO - ENDDO +cc if coupled to atmsopheric model, use the +cc Co2 value passed from the coupler +c#ifndef USE_ATMOSCO2 +cC PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv +c DO j=1-OLy,sNy+OLy +c DO i=1-OLx,sNx+OLx +c AtmospCO2(i,j,bi,bj)=278.0 _d -6 +c ENDDO +c ENDDO +c#endif C ================================================================= C determine inorganic carbon chem coefficients - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx + DO j=jmin,jmax + DO i=imin,imax #ifdef DIC_BIOTIC cQQQQ check ptracer numbers - surfalk(i,j) = PTRACER(i,j,klev,bi,bj,2) +#ifdef DIC_BOUNDS + surfalk(i,j) = max(0.4 _d 0, + & min(10. _d 0,PTR_ALK(i,j,klev))) + & * maskC(i,j,kLev,bi,bj) + surfphos(i,j) = max(1.0 _d -11, + & min(1._d -1, PTR_PO4(i,j,klev))) + & * maskC(i,j,kLev,bi,bj) +#else + surfalk(i,j) = PTR_ALK(i,j,klev) & * maskC(i,j,kLev,bi,bj) - surfphos(i,j) = PTRACER(i,j,klev,bi,bj,3) + surfphos(i,j) = PTR_PO4(i,j,klev) & * maskC(i,j,kLev,bi,bj) +#endif #else - surfalk(i,j) = 2.366595 * salt(i,j,kLev,bi,bj)/gsm_s + surfalk(i,j) = 2.366595 _d 0 * salt(i,j,kLev,bi,bj)/gsm_s & * maskC(i,j,kLev,bi,bj) - surfphos(i,j) = 5.1225e-4 * maskC(i,j,kLev,bi,bj) + surfphos(i,j) = 5.1225 _d -4 * maskC(i,j,kLev,bi,bj) #endif C FOR NON-INTERACTIVE Si - surfsi(i,j) = 7.6838e-3 * maskC(i,j,kLev,bi,bj) + surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj) +#ifdef DIC_BOUNDS + surftemp(i,j) = max(-4. _d 0, + & min(50. _d 0, theta(i,j,kLev,bi,bj))) + surfsalt(i,j) = max(4. _d 0, + & min(50. _d 0, salt(i,j,kLev,bi,bj))) + surfdic(i,j) = max(0.4 _d 0, + & min(10. _d 0, PTR_CO2(i,j,kLev))) +#else + surftemp(i,j) = theta(i,j,kLev,bi,bj) + surfsalt(i,j) = salt(i,j,kLev,bi,bj) + surfdic(i,j) = PTR_CO2(i,j,kLev) +#endif ENDDO ENDDO CALL CARBON_COEFFS( - I theta,salt, - I bi,bj,iMin,iMax,jMin,jMax) + I surftemp,surfsalt, + I bi,bj,iMin,iMax,jMin,jMax,myThid) C==================================================================== -#define PH_APPROX -c set number of iterations for [H+] solvers -#ifdef PH_APPROX - inewtonmax = 1 -#else - inewtonmax = 10 + DO j=jmin,jmax + DO i=imin,imax +C Compute AtmosP and Kwexch_Pre which are re-used for flux of O2 + +#ifdef USE_PLOAD +C Convert anomalous pressure pLoad (in Pa) from atmospheric model +C to total pressure (in Atm) +C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb +C rather than the actual ref. pressure from Atm. model so that on +C average AtmosP is about 1 Atm. + AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm #endif - ibrackmax = 30 -C determine pCO2 in surface ocean -C set guess of pH for first step here -C IF first step THEN use bracket-bisection for first step, -C and determine carbon coefficients for safety -C ELSE use newton-raphson with previous H+(x,y) as first guess - - donewt=1 - -c for first few timesteps - IF(myIter .le. (nIter0+inewtonmax) )then - donewt=0 - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - pH(i,j,bi,bj) = 8.0 - ENDDO - ENDDO -#ifdef PH_APPROX - print*,'QQ: pCO2 approximation method' -c first approxmation - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - do it=1,10 - CALL CALC_PCO2_APPROX( - I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), - I PTR_CO2(i,j,kLev), surfphos(i,j), - I surfsi(i,j),surfalk(i,j), - I ak1(i,j,bi,bj),ak2(i,j,bi,bj), - I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), - I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), - I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), - I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), - U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) - enddo + +C Pre-compute part of exchange coefficient: pisvel*(1-fice) +C Schmidt number is accounted for later + pisvel(i,j)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5 + Kwexch_Pre(i,j,bi,bj) = pisvel(i,j) + & * (1. _d 0 - FIce(i,j,bi,bj)) + ENDDO ENDDO -#else - print*,'QQ: pCO2 full method' -#endif - ENDIF - c pCO2 solver... - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx +C$TAF LOOP = parallel + DO j=jmin,jmax +C$TAF LOOP = parallel + DO i=imin,imax - IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN -#ifdef PH_APPROX + IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN CALL CALC_PCO2_APPROX( - I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), - I PTR_CO2(i,j,kLev), surfphos(i,j), - I surfsi(i,j),surfalk(i,j), - I ak1(i,j,bi,bj),ak2(i,j,bi,bj), - I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), - I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), - I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), - I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), - U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) -#else - CALL CALC_PCO2(donewt,inewtonmax,ibrackmax, - I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), - I PTR_CO2(i,j,kLev), surfphos(i,j), + I surftemp(i,j),surfsalt(i,j), + I surfdic(i,j), surfphos(i,j), I surfsi(i,j),surfalk(i,j), I ak1(i,j,bi,bj),ak2(i,j,bi,bj), I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), - I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), + I aksi(i,j,bi,bj),akf(i,j,bi,bj), + I ak0(i,j,bi,bj), fugf(i,j,bi,bj), + I ff(i,j,bi,bj), I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), - U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) -#endif + U pH(i,j,bi,bj),pCO2(i,j,bi,bj), + I i,j,kLev,bi,bj,myIter,myThid ) ELSE - pCO2(i,j,bi,bj)=0. _d 0 - END IF + pCO2(i,j,bi,bj)=0. _d 0 + ENDIF ENDDO ENDDO - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx + DO j=jmin,jmax + DO i=imin,imax - IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN + IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN C calculate SCHMIDT NO. for CO2 - SchmidtNoDIC(i,j) = - & sca1 + SchmidtNoDIC(i,j) = + & sca1 & + sca2 * theta(i,j,kLev,bi,bj) - & + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) - & + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) + & + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) + & + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) & *theta(i,j,kLev,bi,bj) +c make sure Schmidt number isn't negative (will happen if temp>39C) + SchmidtNoDIC(i,j)=max(1.0 _d -2, SchmidtNoDIC(i,j)) C Determine surface flux (FDIC) C first correct pCO2at for surface atmos pressure - pCO2sat(i,j) = + pCO2sat(i,j) = & AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) -c find exchange coefficient -c account for schmidt number and and varible piston velocity - Kwexch(i,j) = - & pisvel(i,j,bi,bj) - & / sqrt(SchmidtNoDIC(i,j)/660.0) -c OR use a constant coeff -c Kwexch(i,j) = 5e-5 -c ice influence -cQQ Kwexch(i,j) =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j) +C then account for Schmidt number + Kwexch(i,j) = Kwexch_Pre(i,j,bi,bj) + & / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0) +#ifdef WATERVAP_BUG C Calculate flux in terms of DIC units using K0, solubility C Flux = Vp * ([CO2sat] - [CO2]) C CO2sat = K0*pCO2atmos*P/P0 C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 - FluxCO2(i,j,bi,bj) = - & maskC(i,j,kLev,bi,bj)*Kwexch(i,j)*( - & ak0(i,j,bi,bj)*pCO2sat(i,j) - - & ff(i,j,bi,bj)*pCO2(i,j,bi,bj) - & ) - ELSE - FluxCO2(i,j,bi,bj) = 0. - ENDIF + FluxCO2(i,j,bi,bj) = + & Kwexch(i,j)*( + & ak0(i,j,bi,bj)*pCO2sat(i,j) - + & ff(i,j,bi,bj)*pCO2(i,j,bi,bj) + & ) +#else +C Corrected by Val Bennington Nov 2010 per G.A. McKinley's finding +C of error in application of water vapor correction +c Flux = kw*rho*(ff*pCO2atm-k0*FugFac*pCO2ocean) + FluxCO2(i,j,bi,bj) = + & Kwexch(i,j)*( + & ff(i,j,bi,bj)*pCO2sat(i,j) - + & pCO2(i,j,bi,bj)*fugf(i,j,bi,bj) + & *ak0(i,j,bi,bj) ) + & +#endif + ELSE + FluxCO2(i,j,bi,bj) = 0. _d 0 + ENDIF C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil - IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN +#ifdef ALLOW_OLD_VIRTUALFLUX + IF (maskC(i,j,kLev,bi,bj).NE.0. _d 0) THEN c calculate virtual flux c EminusPforV = dS/dt*(1/Sglob) C NOTE: Be very careful with signs here! @@ -222,7 +234,7 @@ C in salinity. Thus, also increase in other surface tracers C (i.e. positive virtual flux into surface layer) C ...so here, VirtualFLux = dC/dt! - VirtualFlux(i,j)=gsm_DIC*surfaceTendencyS(i,j,bi,bj)/gsm_s + VirtualFlux(i,j)=gsm_DIC*surfaceForcingS(i,j,bi,bj)/gsm_s c OR c let virtual flux be zero c VirtualFlux(i,j)=0.d0 @@ -230,20 +242,22 @@ ELSE VirtualFlux(i,j)=0. _d 0 ENDIF +#endif /* ALLOW_OLD_VIRTUALFLUX */ ENDDO ENDDO -C update tendency - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - GDC(i,j)= maskC(i,j,kLev,bi,bj)*( - & FluxCO2(i,j,bi,bj)*recip_drF(kLev) - & + VirtualFlux(i,j) - & ) +C update tendency + DO j=jmin,jmax + DO i=imin,imax + GDC(i,j)= recip_drF(kLev)*recip_hFacC(i,j,kLev,bi,bj) + & *(FluxCO2(i,j,bi,bj) +#ifdef ALLOW_OLD_VIRTUALFLUX + & + VirtualFlux(i,j) +#endif + & ) ENDDO ENDDO #endif -#endif RETURN END