--- MITgcm/pkg/dic/dic_surfforcing.F 2007/05/07 15:58:20 1.13 +++ MITgcm/pkg/dic/dic_surfforcing.F 2007/08/27 19:44:13 1.16 @@ -1,4 +1,4 @@ -C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/dic/dic_surfforcing.F,v 1.13 2007/05/07 15:58:20 stephd Exp $ +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/dic/dic_surfforcing.F,v 1.16 2007/08/27 19:44:13 dfer Exp $ C $Name: $ #include "DIC_OPTIONS.h" @@ -56,7 +56,9 @@ _RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +#ifdef ALLOW_OLD_VIRTUALFLUX _RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +#endif CEOP cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc @@ -69,7 +71,7 @@ C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx - AtmospCO2(i,j,bi,bj)=278.0d-6 + AtmospCO2(i,j,bi,bj)=278.0 _d -6 ENDDO ENDDO #endif @@ -87,9 +89,9 @@ surfphos(i,j) = PTR_PO4(i,j,klev) & * maskC(i,j,kLev,bi,bj) #else - surfalk(i,j) = 2.366595 * salt(i,j,kLev,bi,bj)/gsm_s + surfalk(i,j) = 2.366595 _d 0 * salt(i,j,kLev,bi,bj)/gsm_s & * maskC(i,j,kLev,bi,bj) - surfphos(i,j) = 5.1225e-4 * maskC(i,j,kLev,bi,bj) + surfphos(i,j) = 5.1225 _d -4 * maskC(i,j,kLev,bi,bj) #endif C FOR NON-INTERACTIVE Si surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj) @@ -138,8 +140,12 @@ c #ifdef USE_PLOAD -c convert from Pa to atmos - AtmosP(i,j,bi,bj)=pLoad(i,j,bi,bj)/1.01295e5 +C Convert anomalous pressure pLoad (in Pa) from atmospheric model +C to total pressure (in Atm) +C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb +C rather than the actual ref. pressure from Atm. model so that on +C average AtmosP is about 1 Atm. + AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm #endif C Determine surface flux (FDIC) @@ -148,14 +154,14 @@ & AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) c find exchange coefficient c account for schmidt number and and varible piston velocity - pisvel(i,j,bi,bj) =0.337*wind(i,j,bi,bj)**2/3.6d5 + pisvel(i,j,bi,bj)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5 Kwexch(i,j) = & pisvel(i,j,bi,bj) - & / sqrt(SchmidtNoDIC(i,j)/660.0) + & / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0) c OR use a constant coeff c Kwexch(i,j) = 5e-5 c ice influence - Kwexch(i,j) =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j) + Kwexch(i,j) =(1. _d 0 - FIce(i,j,bi,bj))*Kwexch(i,j) C Calculate flux in terms of DIC units using K0, solubility @@ -168,11 +174,12 @@ & ff(i,j,bi,bj)*pCO2(i,j,bi,bj) & ) ELSE - FluxCO2(i,j,bi,bj) = 0. + FluxCO2(i,j,bi,bj) = 0. _d 0 ENDIF C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil +#ifdef ALLOW_OLD_VIRTUALFLUX IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN c calculate virtual flux c EminusPforV = dS/dt*(1/Sglob) @@ -189,6 +196,7 @@ ELSE VirtualFlux(i,j)=0. _d 0 ENDIF +#endif /* ALLOW_OLD_VIRTUALFLUX */ ENDDO ENDDO @@ -196,9 +204,12 @@ DO j=jmin,jmax DO i=imin,imax GDC(i,j)= maskC(i,j,kLev,bi,bj)*recip_drF(kLev)* - & recip_hFacC(i,j,kLev,bi,bj)*( - & FluxCO2(i,j,bi,bj) + VirtualFlux(i,j) - & ) + & recip_hFacC(i,j,kLev,bi,bj) + & *(FluxCO2(i,j,bi,bj) +#ifdef ALLOW_OLD_VIRTUALFLUX + & + VirtualFlux(i,j) +#endif + & ) ENDDO ENDDO