--- MITgcm/pkg/dic/dic_surfforcing.F 2003/06/25 21:00:36 1.1 +++ MITgcm/pkg/dic/dic_surfforcing.F 2006/11/28 21:16:03 1.12 @@ -1,20 +1,24 @@ -#include "CPP_OPTIONS.h" +C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/dic/dic_surfforcing.F,v 1.12 2006/11/28 21:16:03 stephd Exp $ +C $Name: $ + +#include "DIC_OPTIONS.h" #include "PTRACERS_OPTIONS.h" #include "GCHEM_OPTIONS.h" -CStartOfInterFace - SUBROUTINE DIC_SURFFORCING( PTR_CO2 , GDC, +CBOP +C !ROUTINE: DIC_SURFFORCING + +C !INTERFACE: ========================================================== + SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC, I bi,bj,imin,imax,jmin,jmax, I myIter,myTime,myThid) -C /==========================================================\ -C | SUBROUTINE DIC_SURFFORCING | -C | o Calculate the carbon air-sea flux terms | -C | o following external_forcing_dic.F from Mick | -C |==========================================================| - IMPLICIT NONE +C !DESCRIPTION: +C Calculate the carbon air-sea flux terms +C following external_forcing_dic.F (OCMIP run) from Mick -C == GLobal variables == +C !USES: =============================================================== + IMPLICIT NONE #include "SIZE.h" #include "DYNVARS.h" #include "EEPARAMS.h" @@ -22,25 +26,28 @@ #include "GRID.h" #include "FFIELDS.h" #include "DIC_ABIOTIC.h" -#ifdef DIC_BIOTIC -#include "PTRACERS.h" -#endif -C == Routine arguments == +C !INPUT PARAMETERS: =================================================== +C myThid :: thread number +C myIter :: current timestep +C myTime :: current time +c PTR_CO2 :: DIC tracer field INTEGER myIter, myThid _RL myTime _RL PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) - _RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + _RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) + _RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) INTEGER iMin,iMax,jMin,jMax, bi, bj +C !OUTPUT PARAMETERS: =================================================== +c GDC :: tendency due to air-sea exchange + _RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) + #ifdef ALLOW_PTRACERS -#ifdef DIC_ABIOTIC -C == Local variables == - INTEGER I,J, kLev + +C !LOCAL VARIABLES: ==================================================== + INTEGER I,J, kLev, it C Number of iterations for pCO2 solvers... - INTEGER inewtonmax - INTEGER ibrackmax - INTEGER donewt C Solubility relation coefficients _RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) @@ -50,7 +57,7 @@ _RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL FluxCO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) +CEOP cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc @@ -66,14 +73,14 @@ C ================================================================= C determine inorganic carbon chem coefficients - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx + DO j=jmin,jmax + DO i=imin,imax #ifdef DIC_BIOTIC cQQQQ check ptracer numbers - surfalk(i,j) = PTRACER(i,j,klev,bi,bj,2) + surfalk(i,j) = PTR_ALK(i,j,klev) & * maskC(i,j,kLev,bi,bj) - surfphos(i,j) = PTRACER(i,j,klev,bi,bj,3) + surfphos(i,j) = PTR_PO4(i,j,klev) & * maskC(i,j,kLev,bi,bj) #else surfalk(i,j) = 2.366595 * salt(i,j,kLev,bi,bj)/gsm_s @@ -81,7 +88,7 @@ surfphos(i,j) = 5.1225e-4 * maskC(i,j,kLev,bi,bj) #endif C FOR NON-INTERACTIVE Si - surfsi(i,j) = 7.6838e-3 * maskC(i,j,kLev,bi,bj) + surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj) ENDDO ENDDO @@ -90,59 +97,13 @@ I bi,bj,iMin,iMax,jMin,jMax) C==================================================================== -#define PH_APPROX -c set number of iterations for [H+] solvers -#ifdef PH_APPROX - inewtonmax = 1 -#else - inewtonmax = 10 -#endif - ibrackmax = 30 -C determine pCO2 in surface ocean -C set guess of pH for first step here -C IF first step THEN use bracket-bisection for first step, -C and determine carbon coefficients for safety -C ELSE use newton-raphson with previous H+(x,y) as first guess - - donewt=1 - -c for first few timesteps - IF(myIter .le. (nIter0+inewtonmax) )then - donewt=0 - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - pH(i,j,bi,bj) = 8.0 - ENDDO - ENDDO -#ifdef PH_APPROX - print*,'QQ: pCO2 approximation method' -c first approxmation - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - CALL CALC_PCO2_APPROX( - I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), - I PTR_CO2(i,j,kLev), surfphos(i,j), - I surfsi(i,j),surfalk(i,j), - I ak1(i,j,bi,bj),ak2(i,j,bi,bj), - I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), - I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), - I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), - I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), - U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) - ENDDO - ENDDO -#else - print*,'QQ: pCO2 full method' -#endif - ENDIF - - c pCO2 solver... - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx +C$TAF LOOP = parallel + DO j=jmin,jmax +C$TAF LOOP = parallel + DO i=imin,imax IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN -#ifdef PH_APPROX CALL CALC_PCO2_APPROX( I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), I PTR_CO2(i,j,kLev), surfphos(i,j), @@ -153,26 +114,14 @@ I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) -#else - CALL CALC_PCO2(donewt,inewtonmax,ibrackmax, - I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), - I PTR_CO2(i,j,kLev), surfphos(i,j), - I surfsi(i,j),surfalk(i,j), - I ak1(i,j,bi,bj),ak2(i,j,bi,bj), - I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), - I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), - I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), - I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), - U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) -#endif ELSE pCO2(i,j,bi,bj)=0. _d 0 END IF ENDDO ENDDO - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx + DO j=jmin,jmax + DO i=imin,imax IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN C calculate SCHMIDT NO. for CO2 @@ -189,29 +138,30 @@ & AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) c find exchange coefficient c account for schmidt number and and varible piston velocity + pisvel(i,j,bi,bj) =0.337*wind(i,j,bi,bj)**2/3.6d5 Kwexch(i,j) = & pisvel(i,j,bi,bj) & / sqrt(SchmidtNoDIC(i,j)/660.0) c OR use a constant coeff c Kwexch(i,j) = 5e-5 c ice influence -cQQ Kwexch(i,j) =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j) + Kwexch(i,j) =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j) C Calculate flux in terms of DIC units using K0, solubility C Flux = Vp * ([CO2sat] - [CO2]) C CO2sat = K0*pCO2atmos*P/P0 C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 - FluxCO2(i,j) = + FluxCO2(i,j,bi,bj) = & maskC(i,j,kLev,bi,bj)*Kwexch(i,j)*( & ak0(i,j,bi,bj)*pCO2sat(i,j) - & ff(i,j,bi,bj)*pCO2(i,j,bi,bj) & ) ELSE - FluxCO2(i,j) = 0. + FluxCO2(i,j,bi,bj) = 0. ENDIF C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) - FluxCO2(i,j) = FluxCO2(i,j)/permil + FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN c calculate virtual flux @@ -221,7 +171,7 @@ C in salinity. Thus, also increase in other surface tracers C (i.e. positive virtual flux into surface layer) C ...so here, VirtualFLux = dC/dt! - VirtualFlux(i,j)=gsm_DIC*surfaceTendencyS(i,j,bi,bj)/gsm_s + VirtualFlux(i,j)=gsm_DIC*surfaceForcingS(i,j,bi,bj)/gsm_s c OR c let virtual flux be zero c VirtualFlux(i,j)=0.d0 @@ -233,16 +183,15 @@ ENDDO C update tendency - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - GDC(i,j)= maskC(i,j,kLev,bi,bj)*( - & FluxCO2(i,j)*recip_drF(kLev) - & + VirtualFlux(i,j) + DO j=jmin,jmax + DO i=imin,imax + GDC(i,j)= maskC(i,j,kLev,bi,bj)*recip_drF(kLev)* + & recip_hFacC(i,j,kLev,bi,bj)*( + & FluxCO2(i,j,bi,bj) + VirtualFlux(i,j) & ) ENDDO ENDDO #endif -#endif RETURN END