--- MITgcm/pkg/dic/dic_surfforcing.F 2003/06/25 21:00:36 1.1 +++ MITgcm/pkg/dic/dic_surfforcing.F 2003/10/09 04:19:19 1.4 @@ -1,4 +1,4 @@ -#include "CPP_OPTIONS.h" +#include "DIC_OPTIONS.h" #include "PTRACERS_OPTIONS.h" #include "GCHEM_OPTIONS.h" @@ -34,13 +34,9 @@ INTEGER iMin,iMax,jMin,jMax, bi, bj #ifdef ALLOW_PTRACERS -#ifdef DIC_ABIOTIC C == Local variables == - INTEGER I,J, kLev + INTEGER I,J, kLev, it C Number of iterations for pCO2 solvers... - INTEGER inewtonmax - INTEGER ibrackmax - INTEGER donewt C Solubility relation coefficients _RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) @@ -50,7 +46,6 @@ _RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) - _RL FluxCO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc @@ -81,7 +76,7 @@ surfphos(i,j) = 5.1225e-4 * maskC(i,j,kLev,bi,bj) #endif C FOR NON-INTERACTIVE Si - surfsi(i,j) = 7.6838e-3 * maskC(i,j,kLev,bi,bj) + surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj) ENDDO ENDDO @@ -90,59 +85,13 @@ I bi,bj,iMin,iMax,jMin,jMax) C==================================================================== -#define PH_APPROX -c set number of iterations for [H+] solvers -#ifdef PH_APPROX - inewtonmax = 1 -#else - inewtonmax = 10 -#endif - ibrackmax = 30 -C determine pCO2 in surface ocean -C set guess of pH for first step here -C IF first step THEN use bracket-bisection for first step, -C and determine carbon coefficients for safety -C ELSE use newton-raphson with previous H+(x,y) as first guess - - donewt=1 - -c for first few timesteps - IF(myIter .le. (nIter0+inewtonmax) )then - donewt=0 - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - pH(i,j,bi,bj) = 8.0 - ENDDO - ENDDO -#ifdef PH_APPROX - print*,'QQ: pCO2 approximation method' -c first approxmation - DO j=1-OLy,sNy+OLy - DO i=1-OLx,sNx+OLx - CALL CALC_PCO2_APPROX( - I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), - I PTR_CO2(i,j,kLev), surfphos(i,j), - I surfsi(i,j),surfalk(i,j), - I ak1(i,j,bi,bj),ak2(i,j,bi,bj), - I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), - I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), - I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), - I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), - U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) - ENDDO - ENDDO -#else - print*,'QQ: pCO2 full method' -#endif - ENDIF - - c pCO2 solver... +C$TAF LOOP = parallel DO j=1-OLy,sNy+OLy +C$TAF LOOP = parallel DO i=1-OLx,sNx+OLx IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN -#ifdef PH_APPROX CALL CALC_PCO2_APPROX( I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), I PTR_CO2(i,j,kLev), surfphos(i,j), @@ -153,18 +102,6 @@ I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) -#else - CALL CALC_PCO2(donewt,inewtonmax,ibrackmax, - I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), - I PTR_CO2(i,j,kLev), surfphos(i,j), - I surfsi(i,j),surfalk(i,j), - I ak1(i,j,bi,bj),ak2(i,j,bi,bj), - I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), - I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), - I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), - I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), - U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) -#endif ELSE pCO2(i,j,bi,bj)=0. _d 0 END IF @@ -202,16 +139,16 @@ C Flux = Vp * ([CO2sat] - [CO2]) C CO2sat = K0*pCO2atmos*P/P0 C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 - FluxCO2(i,j) = + FluxCO2(i,j,bi,bj) = & maskC(i,j,kLev,bi,bj)*Kwexch(i,j)*( & ak0(i,j,bi,bj)*pCO2sat(i,j) - & ff(i,j,bi,bj)*pCO2(i,j,bi,bj) & ) ELSE - FluxCO2(i,j) = 0. + FluxCO2(i,j,bi,bj) = 0. ENDIF C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) - FluxCO2(i,j) = FluxCO2(i,j)/permil + FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN c calculate virtual flux @@ -236,13 +173,12 @@ DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx GDC(i,j)= maskC(i,j,kLev,bi,bj)*( - & FluxCO2(i,j)*recip_drF(kLev) + & FluxCO2(i,j,bi,bj)*recip_drF(kLev) & + VirtualFlux(i,j) & ) ENDDO ENDDO #endif -#endif RETURN END