/[MITgcm]/MITgcm/pkg/dic/dic_surfforcing.F
ViewVC logotype

Contents of /MITgcm/pkg/dic/dic_surfforcing.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.17 - (show annotations) (download)
Tue Aug 28 02:30:31 2007 UTC (16 years, 10 months ago) by dfer
Branch: MAIN
CVS Tags: checkpoint59g, checkpoint59i, checkpoint59h
Changes since 1.16: +32 -27 lines
Isolate some computation useful for both CO2 and O2 fluxes (avoid doing
some stuff twice)

1 C $Header: /u/gcmpack/MITgcm/pkg/dic/dic_surfforcing.F,v 1.16 2007/08/27 19:44:13 dfer Exp $
2 C $Name: $
3
4 #include "DIC_OPTIONS.h"
5 #include "PTRACERS_OPTIONS.h"
6 #include "GCHEM_OPTIONS.h"
7
8 CBOP
9 C !ROUTINE: DIC_SURFFORCING
10
11 C !INTERFACE: ==========================================================
12 SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC,
13 I bi,bj,imin,imax,jmin,jmax,
14 I myIter,myTime,myThid)
15
16 C !DESCRIPTION:
17 C Calculate the carbon air-sea flux terms
18 C following external_forcing_dic.F (OCMIP run) from Mick
19
20 C !USES: ===============================================================
21 IMPLICIT NONE
22 #include "SIZE.h"
23 #include "DYNVARS.h"
24 #include "EEPARAMS.h"
25 #include "PARAMS.h"
26 #include "GRID.h"
27 #include "FFIELDS.h"
28 #include "DIC_ABIOTIC.h"
29
30 C !INPUT PARAMETERS: ===================================================
31 C myThid :: thread number
32 C myIter :: current timestep
33 C myTime :: current time
34 c PTR_CO2 :: DIC tracer field
35 INTEGER myIter, myThid
36 _RL myTime
37 _RL PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
38 _RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
39 _RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
40 INTEGER iMin,iMax,jMin,jMax, bi, bj
41
42 C !OUTPUT PARAMETERS: ===================================================
43 c GDC :: tendency due to air-sea exchange
44 _RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
45
46 #ifdef ALLOW_PTRACERS
47
48 C !LOCAL VARIABLES: ====================================================
49 INTEGER I,J, kLev, it
50 C Number of iterations for pCO2 solvers...
51 C Solubility relation coefficients
52 _RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
53 _RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
54 _RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
55 _RL pisvel(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
56 C local variables for carbon chem
57 _RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
58 _RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
59 _RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
60 #ifdef ALLOW_OLD_VIRTUALFLUX
61 _RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
62 #endif
63 CEOP
64
65 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
66
67 kLev=1
68
69 c if coupled to atmsopheric model, use the
70 c Co2 value passed from the coupler
71 #ifndef USE_ATMOSCO2
72 C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv
73 DO j=1-OLy,sNy+OLy
74 DO i=1-OLx,sNx+OLx
75 AtmospCO2(i,j,bi,bj)=278.0 _d -6
76 ENDDO
77 ENDDO
78 #endif
79
80
81 C =================================================================
82 C determine inorganic carbon chem coefficients
83 DO j=jmin,jmax
84 DO i=imin,imax
85
86 #ifdef DIC_BIOTIC
87 cQQQQ check ptracer numbers
88 surfalk(i,j) = PTR_ALK(i,j,klev)
89 & * maskC(i,j,kLev,bi,bj)
90 surfphos(i,j) = PTR_PO4(i,j,klev)
91 & * maskC(i,j,kLev,bi,bj)
92 #else
93 surfalk(i,j) = 2.366595 _d 0 * salt(i,j,kLev,bi,bj)/gsm_s
94 & * maskC(i,j,kLev,bi,bj)
95 surfphos(i,j) = 5.1225 _d -4 * maskC(i,j,kLev,bi,bj)
96 #endif
97 C FOR NON-INTERACTIVE Si
98 surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj)
99 ENDDO
100 ENDDO
101
102 CALL CARBON_COEFFS(
103 I theta,salt,
104 I bi,bj,iMin,iMax,jMin,jMax)
105 C====================================================================
106
107 DO j=jmin,jmax
108 DO i=imin,imax
109 C Compute AtmosP and Kwexch_Pre which are re-used for flux of O2
110
111 #ifdef USE_PLOAD
112 C Convert anomalous pressure pLoad (in Pa) from atmospheric model
113 C to total pressure (in Atm)
114 C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb
115 C rather than the actual ref. pressure from Atm. model so that on
116 C average AtmosP is about 1 Atm.
117 AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm
118 #endif
119
120 C Pre-compute part of exchange coefficient: pisvel*(1-fice)
121 C Schmidt number is accounted for later
122 pisvel(i,j)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5
123 Kwexch_Pre(i,j,bi,bj) = pisvel(i,j)
124 & * (1. _d 0 - FIce(i,j,bi,bj))
125
126 ENDDO
127 ENDDO
128
129 c pCO2 solver...
130 C$TAF LOOP = parallel
131 DO j=jmin,jmax
132 C$TAF LOOP = parallel
133 DO i=imin,imax
134
135 IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN
136 CALL CALC_PCO2_APPROX(
137 I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj),
138 I PTR_CO2(i,j,kLev), surfphos(i,j),
139 I surfsi(i,j),surfalk(i,j),
140 I ak1(i,j,bi,bj),ak2(i,j,bi,bj),
141 I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj),
142 I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj),
143 I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj),
144 I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj),
145 U pH(i,j,bi,bj),pCO2(i,j,bi,bj) )
146 ELSE
147 pCO2(i,j,bi,bj)=0. _d 0
148 END IF
149 ENDDO
150 ENDDO
151
152 DO j=jmin,jmax
153 DO i=imin,imax
154
155 IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN
156 C calculate SCHMIDT NO. for CO2
157 SchmidtNoDIC(i,j) =
158 & sca1
159 & + sca2 * theta(i,j,kLev,bi,bj)
160 & + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj)
161 & + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj)
162 & *theta(i,j,kLev,bi,bj)
163
164 C Determine surface flux (FDIC)
165 C first correct pCO2at for surface atmos pressure
166 pCO2sat(i,j) =
167 & AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj)
168
169 C then account for Schmidt number
170 Kwexch(i,j) = Kwexch_Pre(i,j,bi,bj)
171 & / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0)
172
173 C Calculate flux in terms of DIC units using K0, solubility
174 C Flux = Vp * ([CO2sat] - [CO2])
175 C CO2sat = K0*pCO2atmos*P/P0
176 C Converting pCO2 to [CO2] using ff, as in CALC_PCO2
177 FluxCO2(i,j,bi,bj) =
178 & Kwexch(i,j)*(
179 & ak0(i,j,bi,bj)*pCO2sat(i,j) -
180 & ff(i,j,bi,bj)*pCO2(i,j,bi,bj)
181 & )
182 ELSE
183 FluxCO2(i,j,bi,bj) = 0. _d 0
184 ENDIF
185 C convert flux (mol kg-1 m s-1) to (mol m-2 s-1)
186 FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil
187
188 #ifdef ALLOW_OLD_VIRTUALFLUX
189 IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN
190 c calculate virtual flux
191 c EminusPforV = dS/dt*(1/Sglob)
192 C NOTE: Be very careful with signs here!
193 C Positive EminusPforV => loss of water to atmos and increase
194 C in salinity. Thus, also increase in other surface tracers
195 C (i.e. positive virtual flux into surface layer)
196 C ...so here, VirtualFLux = dC/dt!
197 VirtualFlux(i,j)=gsm_DIC*surfaceForcingS(i,j,bi,bj)/gsm_s
198 c OR
199 c let virtual flux be zero
200 c VirtualFlux(i,j)=0.d0
201 c
202 ELSE
203 VirtualFlux(i,j)=0. _d 0
204 ENDIF
205 #endif /* ALLOW_OLD_VIRTUALFLUX */
206 ENDDO
207 ENDDO
208
209 C update tendency
210 DO j=jmin,jmax
211 DO i=imin,imax
212 GDC(i,j)= recip_drF(kLev)*recip_hFacC(i,j,kLev,bi,bj)
213 & *(FluxCO2(i,j,bi,bj)
214 #ifdef ALLOW_OLD_VIRTUALFLUX
215 & + VirtualFlux(i,j)
216 #endif
217 & )
218 ENDDO
219 ENDDO
220
221 #endif
222 RETURN
223 END

  ViewVC Help
Powered by ViewVC 1.1.22