/[MITgcm]/MITgcm/pkg/dic/dic_surfforcing.F
ViewVC logotype

Diff of /MITgcm/pkg/dic/dic_surfforcing.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph | View Patch Patch

revision 1.2 by stephd, Wed Jul 9 19:59:18 2003 UTC revision 1.29 by dfer, Fri Oct 7 21:36:39 2011 UTC
# Line 1  Line 1 
1  #include "CPP_OPTIONS.h"  C $Header$
2    C $Name$
3    
4    #include "DIC_OPTIONS.h"
5  #include "PTRACERS_OPTIONS.h"  #include "PTRACERS_OPTIONS.h"
 #include "GCHEM_OPTIONS.h"  
6    
7  CStartOfInterFace  CBOP
8        SUBROUTINE DIC_SURFFORCING( PTR_CO2 , GDC,  C !ROUTINE: DIC_SURFFORCING
9    
10    C !INTERFACE: ==========================================================
11          SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC,
12       I           bi,bj,imin,imax,jmin,jmax,       I           bi,bj,imin,imax,jmin,jmax,
13       I           myIter,myTime,myThid)       I           myIter,myTime,myThid)
14    
15  C     /==========================================================\  C !DESCRIPTION:
16  C     | SUBROUTINE DIC_SURFFORCING                               |  C  Calculate the carbon air-sea flux terms
17  C     | o Calculate the carbon air-sea flux terms                |  C  following external_forcing_dic.F (OCMIP run) from Mick
 C     | o following external_forcing_dic.F from Mick             |  
 C     |==========================================================|  
       IMPLICIT NONE  
18    
19  C     == GLobal variables ==  C !USES: ===============================================================
20          IMPLICIT NONE
21  #include "SIZE.h"  #include "SIZE.h"
22  #include "DYNVARS.h"  #include "DYNVARS.h"
23  #include "EEPARAMS.h"  #include "EEPARAMS.h"
24  #include "PARAMS.h"  #include "PARAMS.h"
25  #include "GRID.h"  #include "GRID.h"
26  #include "FFIELDS.h"  #include "FFIELDS.h"
27  #include "DIC_ABIOTIC.h"  #include "DIC_VARS.h"
 #ifdef DIC_BIOTIC  
 #include "PTRACERS.h"  
 #endif  
28    
29  C     == Routine arguments ==  C !INPUT PARAMETERS: ===================================================
30    C  myThid               :: thread number
31    C  myIter               :: current timestep
32    C  myTime               :: current time
33    c  PTR_CO2              :: DIC tracer field
34        INTEGER myIter, myThid        INTEGER myIter, myThid
35        _RL myTime        _RL myTime
36        _RL  PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)        _RL  PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
37        _RL  GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL  PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
38          _RL  PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
39        INTEGER iMin,iMax,jMin,jMax, bi, bj        INTEGER iMin,iMax,jMin,jMax, bi, bj
40    
41    C !OUTPUT PARAMETERS: ===================================================
42    c GDC                   :: tendency due to air-sea exchange
43          _RL  GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
44    
45  #ifdef ALLOW_PTRACERS  #ifdef ALLOW_PTRACERS
46  #ifdef DIC_ABIOTIC  
47  C     == Local variables ==  C !LOCAL VARIABLES: ====================================================
48         INTEGER I,J, kLev, it         INTEGER i,j, kLev
49           _RL co3dummy
50  C Number of iterations for pCO2 solvers...  C Number of iterations for pCO2 solvers...
       INTEGER inewtonmax  
       INTEGER ibrackmax  
       INTEGER donewt  
51  C Solubility relation coefficients  C Solubility relation coefficients
52        _RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
53        _RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
54        _RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
55          _RL pisvel(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
56  C local variables for carbon chem  C local variables for carbon chem
57        _RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
58        _RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
59        _RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
60          _RL surftemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
61          _RL surfsalt(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
62          _RL surfdic(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
63    #ifdef ALLOW_OLD_VIRTUALFLUX
64        _RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy)        _RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
65    #endif
66    CEOP
67    
68  cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
69    
70        kLev=1        kLev=1
71    
72  C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv  cc if coupled to atmsopheric model, use the
73         DO j=1-OLy,sNy+OLy  cc Co2 value passed from the coupler
74          DO i=1-OLx,sNx+OLx  c#ifndef USE_ATMOSCO2
75             AtmospCO2(i,j,bi,bj)=278.0d-6  cC PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv
76          ENDDO  c       DO j=1-OLy,sNy+OLy
77         ENDDO  c        DO i=1-OLx,sNx+OLx
78    c           AtmospCO2(i,j,bi,bj)=278.0 _d -6
79    c        ENDDO
80    c       ENDDO
81    c#endif
82    
83    
84  C =================================================================  C =================================================================
85  C determine inorganic carbon chem coefficients  C determine inorganic carbon chem coefficients
86          DO j=1-OLy,sNy+OLy          DO j=jmin,jmax
87           DO i=1-OLx,sNx+OLx           DO i=imin,imax
88    
89  #ifdef DIC_BIOTIC  #ifdef DIC_BIOTIC
90  cQQQQ check ptracer numbers  cQQQQ check ptracer numbers
91               surfalk(i,j) = PTRACER(i,j,klev,bi,bj,2)  #ifdef DIC_BOUNDS
92                 surfalk(i,j) = max(0.4 _d 0,
93         &                          min(10. _d 0,PTR_ALK(i,j,klev)))
94         &                          * maskC(i,j,kLev,bi,bj)
95                 surfphos(i,j)  = max(1.0 _d -11,
96         &                          min(1._d -1, PTR_PO4(i,j,klev)))
97         &                          * maskC(i,j,kLev,bi,bj)
98    #else
99                 surfalk(i,j) = PTR_ALK(i,j,klev)
100       &                          * maskC(i,j,kLev,bi,bj)       &                          * maskC(i,j,kLev,bi,bj)
101               surfphos(i,j)  = PTRACER(i,j,klev,bi,bj,3)               surfphos(i,j)  = PTR_PO4(i,j,klev)
102       &                          * maskC(i,j,kLev,bi,bj)       &                          * maskC(i,j,kLev,bi,bj)
103    #endif
104  #else  #else
105               surfalk(i,j) = 2.366595 * salt(i,j,kLev,bi,bj)/gsm_s               surfalk(i,j) = 2.366595 _d 0 * salt(i,j,kLev,bi,bj)/gsm_s
106       &                          * maskC(i,j,kLev,bi,bj)       &                          * maskC(i,j,kLev,bi,bj)
107               surfphos(i,j)  = 5.1225e-4 * maskC(i,j,kLev,bi,bj)               surfphos(i,j)  = 5.1225 _d -4 * maskC(i,j,kLev,bi,bj)
108  #endif  #endif
109  C FOR NON-INTERACTIVE Si  C FOR NON-INTERACTIVE Si
110               surfsi(i,j)   = 7.6838e-3 * maskC(i,j,kLev,bi,bj)               surfsi(i,j)   = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj)
111    #ifdef DIC_BOUNDS
112                surftemp(i,j) = max(-4. _d 0,
113         &                          min(50. _d 0, theta(i,j,kLev,bi,bj)))
114                surfsalt(i,j) = max(4. _d 0,
115         &                          min(50. _d 0, salt(i,j,kLev,bi,bj)))
116                surfdic(i,j)  = max(0.4 _d 0,
117         &                          min(10. _d 0, PTR_CO2(i,j,kLev)))
118    #else
119                surftemp(i,j) = theta(i,j,kLev,bi,bj)
120                surfsalt(i,j) = salt(i,j,kLev,bi,bj)
121                surfdic(i,j)  = PTR_CO2(i,j,kLev)
122    #endif
123            ENDDO            ENDDO
124           ENDDO           ENDDO
125    
126           CALL CARBON_COEFFS(           CALL CARBON_COEFFS(
127       I                       theta,salt,       I                       surftemp,surfsalt,
128       I                       bi,bj,iMin,iMax,jMin,jMax)       I                       bi,bj,iMin,iMax,jMin,jMax,myThid)
129  C====================================================================  C====================================================================
130    
131  #define PH_APPROX         DO j=jmin,jmax
132  c set number of iterations for [H+] solvers          DO i=imin,imax
133  #ifdef PH_APPROX  C Compute AtmosP and Kwexch_Pre which are re-used for flux of O2
134         inewtonmax = 1  
135  #else  #ifdef USE_PLOAD
136         inewtonmax = 10  C Convert anomalous pressure pLoad (in Pa) from atmospheric model
137    C to total pressure (in Atm)
138    C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb
139    C       rather than the actual ref. pressure from Atm. model so that on
140    C       average AtmosP is about 1 Atm.
141                    AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm
142  #endif  #endif
143         ibrackmax = 30  
144  C determine pCO2 in surface ocean  C Pre-compute part of exchange coefficient: pisvel*(1-fice)
145  C set guess of pH for first step here  C Schmidt number is accounted for later
146  C IF first step THEN use bracket-bisection for first step,                pisvel(i,j)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5
147  C and determine carbon coefficients for safety                Kwexch_Pre(i,j,bi,bj) = pisvel(i,j)
148  C ELSE use newton-raphson with previous H+(x,y) as first guess       &                              * (1. _d 0 - FIce(i,j,bi,bj))
149    
        donewt=1  
   
 c for first few timesteps  
        IF(myIter .le. (nIter0+inewtonmax) )then  
           donewt=0  
           DO j=1-OLy,sNy+OLy  
            DO i=1-OLx,sNx+OLx  
                   pH(i,j,bi,bj) = 8.0  
            ENDDO  
           ENDDO  
 #ifdef PH_APPROX  
           print*,'QQ: pCO2 approximation method'  
 c first approxmation  
        DO j=1-OLy,sNy+OLy  
         DO i=1-OLx,sNx+OLx  
          do it=1,10  
           CALL CALC_PCO2_APPROX(  
      I        theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj),  
      I        PTR_CO2(i,j,kLev), surfphos(i,j),  
      I        surfsi(i,j),surfalk(i,j),  
      I        ak1(i,j,bi,bj),ak2(i,j,bi,bj),  
      I        ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj),  
      I        aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj),  
      I        aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj),  
      I        bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj),  
      U        pH(i,j,bi,bj),pCO2(i,j,bi,bj) )  
          enddo  
150          ENDDO          ENDDO
151         ENDDO         ENDDO
 #else  
           print*,'QQ: pCO2 full method'  
 #endif  
        ENDIF  
   
152    
153  c pCO2 solver...  c pCO2 solver...
154         DO j=1-OLy,sNy+OLy  C$TAF LOOP = parallel
155          DO i=1-OLx,sNx+OLx         DO j=jmin,jmax
156    C$TAF LOOP = parallel
157            DO i=imin,imax
158    
159            IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN            IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN
 #ifdef PH_APPROX  
160              CALL CALC_PCO2_APPROX(              CALL CALC_PCO2_APPROX(
161       I        theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj),       I        surftemp(i,j),surfsalt(i,j),
162       I        PTR_CO2(i,j,kLev), surfphos(i,j),       I        surfdic(i,j), surfphos(i,j),
      I        surfsi(i,j),surfalk(i,j),  
      I        ak1(i,j,bi,bj),ak2(i,j,bi,bj),  
      I        ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj),  
      I        aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj),  
      I        aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj),  
      I        bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj),  
      U        pH(i,j,bi,bj),pCO2(i,j,bi,bj) )  
 #else  
             CALL CALC_PCO2(donewt,inewtonmax,ibrackmax,  
      I        theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj),  
      I        PTR_CO2(i,j,kLev), surfphos(i,j),  
163       I        surfsi(i,j),surfalk(i,j),       I        surfsi(i,j),surfalk(i,j),
164       I        ak1(i,j,bi,bj),ak2(i,j,bi,bj),       I        ak1(i,j,bi,bj),ak2(i,j,bi,bj),
165       I        ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj),       I        ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj),
166       I        aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj),       I        aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj),
167       I        aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj),       I        aksi(i,j,bi,bj),akf(i,j,bi,bj),
168         I        ak0(i,j,bi,bj), fugf(i,j,bi,bj),
169         I        ff(i,j,bi,bj),
170       I        bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj),       I        bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj),
171       U        pH(i,j,bi,bj),pCO2(i,j,bi,bj) )       U        pH(i,j,bi,bj),pCO2(i,j,bi,bj),co3dummy,
172  #endif       I        i,j,kLev,bi,bj,myIter,myThid )
173            ELSE            ELSE
174               pCO2(i,j,bi,bj)=0. _d 0              pCO2(i,j,bi,bj)=0. _d 0
175            END IF            ENDIF
176          ENDDO          ENDDO
177         ENDDO         ENDDO
178    
179         DO j=1-OLy,sNy+OLy         DO j=jmin,jmax
180          DO i=1-OLx,sNx+OLx          DO i=imin,imax
181    
182              IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN            IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN
183  C calculate SCHMIDT NO. for CO2  C calculate SCHMIDT NO. for CO2
184                SchmidtNoDIC(i,j) =                SchmidtNoDIC(i,j) =
185       &            sca1       &            sca1
186       &          + sca2 * theta(i,j,kLev,bi,bj)       &          + sca2 * theta(i,j,kLev,bi,bj)
187       &          + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj)         &          + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj)
188       &          + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj)       &          + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj)
189       &                *theta(i,j,kLev,bi,bj)       &                *theta(i,j,kLev,bi,bj)
190    c make sure Schmidt number is not negative (will happen if temp>39C)
191                 SchmidtNoDIC(i,j)=max(1.0 _d -2, SchmidtNoDIC(i,j))
192    
193  C Determine surface flux (FDIC)  C Determine surface flux (FDIC)
194  C first correct pCO2at for surface atmos pressure  C first correct pCO2at for surface atmos pressure
195                pCO2sat(i,j) =                pCO2sat(i,j) =
196       &          AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj)       &          AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj)
 c find exchange coefficient  
 c  account for schmidt number and and varible piston velocity  
               Kwexch(i,j) =  
      &             pisvel(i,j,bi,bj)  
      &             / sqrt(SchmidtNoDIC(i,j)/660.0)  
 c OR use a constant  coeff  
 c             Kwexch(i,j) = 5e-5  
 c ice influence  
 cQQ           Kwexch(i,j)  =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j)  
197    
198    C then account for Schmidt number
199                  Kwexch(i,j) = Kwexch_Pre(i,j,bi,bj)
200         &                    / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0)
201    
202    #ifdef WATERVAP_BUG
203  C Calculate flux in terms of DIC units using K0, solubility  C Calculate flux in terms of DIC units using K0, solubility
204  C Flux = Vp * ([CO2sat] - [CO2])  C Flux = Vp * ([CO2sat] - [CO2])
205  C CO2sat = K0*pCO2atmos*P/P0  C CO2sat = K0*pCO2atmos*P/P0
206  C Converting pCO2 to [CO2] using ff, as in CALC_PCO2  C Converting pCO2 to [CO2] using ff, as in CALC_PCO2
207                FluxCO2(i,j,bi,bj) =                FluxCO2(i,j,bi,bj) =
208       &         maskC(i,j,kLev,bi,bj)*Kwexch(i,j)*(       &         Kwexch(i,j)*(
209       &         ak0(i,j,bi,bj)*pCO2sat(i,j) -       &         ak0(i,j,bi,bj)*pCO2sat(i,j) -
210       &         ff(i,j,bi,bj)*pCO2(i,j,bi,bj)       &         ff(i,j,bi,bj)*pCO2(i,j,bi,bj)
211       &         )       &         )
212              ELSE  #else
213                 FluxCO2(i,j,bi,bj) = 0.  C Corrected by Val Bennington Nov 2010 per G.A. McKinley s finding
214              ENDIF  C of error in application of water vapor correction
215    c Flux = kw*rho*(ff*pCO2atm-k0*FugFac*pCO2ocean)
216                   FluxCO2(i,j,bi,bj) =
217         &          Kwexch(i,j)*(
218         &            ff(i,j,bi,bj)*pCO2sat(i,j) -
219         &            pCO2(i,j,bi,bj)*fugf(i,j,bi,bj)
220         &            *ak0(i,j,bi,bj) )
221         &
222    #endif
223              ELSE
224                  FluxCO2(i,j,bi,bj) = 0. _d 0
225              ENDIF
226  C convert flux (mol kg-1 m s-1) to (mol m-2 s-1)  C convert flux (mol kg-1 m s-1) to (mol m-2 s-1)
227              FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil              FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil
228    
229              IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN  #ifdef ALLOW_OLD_VIRTUALFLUX
230                IF (maskC(i,j,kLev,bi,bj).NE.0. _d 0) THEN
231  c calculate virtual flux  c calculate virtual flux
232  c EminusPforV = dS/dt*(1/Sglob)  c EminusPforV = dS/dt*(1/Sglob)
233  C NOTE: Be very careful with signs here!  C NOTE: Be very careful with signs here!
# Line 222  C Positive EminusPforV => loss of water Line 235  C Positive EminusPforV => loss of water
235  C in salinity. Thus, also increase in other surface tracers  C in salinity. Thus, also increase in other surface tracers
236  C (i.e. positive virtual flux into surface layer)  C (i.e. positive virtual flux into surface layer)
237  C ...so here, VirtualFLux = dC/dt!  C ...so here, VirtualFLux = dC/dt!
238                VirtualFlux(i,j)=gsm_DIC*surfaceTendencyS(i,j,bi,bj)/gsm_s                VirtualFlux(i,j)=gsm_DIC*surfaceForcingS(i,j,bi,bj)/gsm_s
239  c OR  c OR
240  c let virtual flux be zero  c let virtual flux be zero
241  c              VirtualFlux(i,j)=0.d0  c              VirtualFlux(i,j)=0.d0
# Line 230  c Line 243  c
243              ELSE              ELSE
244                VirtualFlux(i,j)=0. _d 0                VirtualFlux(i,j)=0. _d 0
245              ENDIF              ENDIF
246    #endif /* ALLOW_OLD_VIRTUALFLUX */
247            ENDDO            ENDDO
248           ENDDO           ENDDO
249    
250  C update tendency        C update tendency
251           DO j=1-OLy,sNy+OLy           DO j=jmin,jmax
252            DO i=1-OLx,sNx+OLx            DO i=imin,imax
253             GDC(i,j)= maskC(i,j,kLev,bi,bj)*(             GDC(i,j)= recip_drF(kLev)*recip_hFacC(i,j,kLev,bi,bj)
254       &                    FluxCO2(i,j,bi,bj)*recip_drF(kLev)       &              *(FluxCO2(i,j,bi,bj)
255       &                    + VirtualFlux(i,j)  #ifdef ALLOW_OLD_VIRTUALFLUX
256       &                                              )       &              + VirtualFlux(i,j)
257    #endif
258         &               )
259            ENDDO            ENDDO
260           ENDDO           ENDDO
261    
262  #endif  #endif
 #endif  
263          RETURN          RETURN
264          END          END

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.29

  ViewVC Help
Powered by ViewVC 1.1.22