3 |
|
|
4 |
#include "DIC_OPTIONS.h" |
#include "DIC_OPTIONS.h" |
5 |
#include "PTRACERS_OPTIONS.h" |
#include "PTRACERS_OPTIONS.h" |
|
#include "GCHEM_OPTIONS.h" |
|
6 |
|
|
7 |
CBOP |
CBOP |
8 |
C !ROUTINE: DIC_SURFFORCING |
C !ROUTINE: DIC_SURFFORCING |
9 |
|
|
10 |
C !INTERFACE: ========================================================== |
C !INTERFACE: ========================================================== |
11 |
SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC, |
SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC, |
12 |
I bi,bj,imin,imax,jmin,jmax, |
I bi,bj,imin,imax,jmin,jmax, |
13 |
I myIter,myTime,myThid) |
I myIter,myTime,myThid) |
14 |
|
|
15 |
C !DESCRIPTION: |
C !DESCRIPTION: |
16 |
C Calculate the carbon air-sea flux terms |
C Calculate the carbon air-sea flux terms |
17 |
C following external_forcing_dic.F (OCMIP run) from Mick |
C following external_forcing_dic.F (OCMIP run) from Mick |
18 |
|
|
19 |
C !USES: =============================================================== |
C !USES: =============================================================== |
20 |
IMPLICIT NONE |
IMPLICIT NONE |
24 |
#include "PARAMS.h" |
#include "PARAMS.h" |
25 |
#include "GRID.h" |
#include "GRID.h" |
26 |
#include "FFIELDS.h" |
#include "FFIELDS.h" |
27 |
#include "DIC_ABIOTIC.h" |
#include "DIC_VARS.h" |
28 |
|
|
29 |
C !INPUT PARAMETERS: =================================================== |
C !INPUT PARAMETERS: =================================================== |
30 |
C myThid :: thread number |
C myThid :: thread number |
45 |
#ifdef ALLOW_PTRACERS |
#ifdef ALLOW_PTRACERS |
46 |
|
|
47 |
C !LOCAL VARIABLES: ==================================================== |
C !LOCAL VARIABLES: ==================================================== |
48 |
INTEGER I,J, kLev, it |
INTEGER i,j, kLev |
49 |
|
_RL co3dummy |
50 |
C Number of iterations for pCO2 solvers... |
C Number of iterations for pCO2 solvers... |
51 |
C Solubility relation coefficients |
C Solubility relation coefficients |
52 |
_RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
53 |
_RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
54 |
_RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
55 |
|
_RL pisvel(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
56 |
C local variables for carbon chem |
C local variables for carbon chem |
57 |
_RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
58 |
_RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
59 |
_RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
60 |
|
_RL surftemp(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
61 |
|
_RL surfsalt(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
62 |
|
_RL surfdic(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
63 |
|
#ifdef ALLOW_OLD_VIRTUALFLUX |
64 |
_RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
65 |
|
#endif |
66 |
CEOP |
CEOP |
67 |
|
|
68 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
69 |
|
|
70 |
kLev=1 |
kLev=1 |
71 |
|
|
72 |
c if coupled to atmsopheric model, use the |
cc if coupled to atmsopheric model, use the |
73 |
c Co2 value passed from the coupler |
cc Co2 value passed from the coupler |
74 |
#ifndef USE_ATMOSCO2 |
c#ifndef USE_ATMOSCO2 |
75 |
C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv |
cC PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv |
76 |
DO j=1-OLy,sNy+OLy |
c DO j=1-OLy,sNy+OLy |
77 |
DO i=1-OLx,sNx+OLx |
c DO i=1-OLx,sNx+OLx |
78 |
AtmospCO2(i,j,bi,bj)=278.0d-6 |
c AtmospCO2(i,j,bi,bj)=278.0 _d -6 |
79 |
ENDDO |
c ENDDO |
80 |
ENDDO |
c ENDDO |
81 |
#endif |
c#endif |
82 |
|
|
83 |
|
|
84 |
C ================================================================= |
C ================================================================= |
88 |
|
|
89 |
#ifdef DIC_BIOTIC |
#ifdef DIC_BIOTIC |
90 |
cQQQQ check ptracer numbers |
cQQQQ check ptracer numbers |
91 |
|
#ifdef DIC_BOUNDS |
92 |
|
surfalk(i,j) = max(0.4 _d 0, |
93 |
|
& min(10. _d 0,PTR_ALK(i,j,klev))) |
94 |
|
& * maskC(i,j,kLev,bi,bj) |
95 |
|
surfphos(i,j) = max(1.0 _d -11, |
96 |
|
& min(1._d -1, PTR_PO4(i,j,klev))) |
97 |
|
& * maskC(i,j,kLev,bi,bj) |
98 |
|
#else |
99 |
surfalk(i,j) = PTR_ALK(i,j,klev) |
surfalk(i,j) = PTR_ALK(i,j,klev) |
100 |
& * maskC(i,j,kLev,bi,bj) |
& * maskC(i,j,kLev,bi,bj) |
101 |
surfphos(i,j) = PTR_PO4(i,j,klev) |
surfphos(i,j) = PTR_PO4(i,j,klev) |
102 |
& * maskC(i,j,kLev,bi,bj) |
& * maskC(i,j,kLev,bi,bj) |
103 |
|
#endif |
104 |
#else |
#else |
105 |
surfalk(i,j) = 2.366595 * salt(i,j,kLev,bi,bj)/gsm_s |
surfalk(i,j) = 2.366595 _d 0 * salt(i,j,kLev,bi,bj)/gsm_s |
106 |
& * maskC(i,j,kLev,bi,bj) |
& * maskC(i,j,kLev,bi,bj) |
107 |
surfphos(i,j) = 5.1225e-4 * maskC(i,j,kLev,bi,bj) |
surfphos(i,j) = 5.1225 _d -4 * maskC(i,j,kLev,bi,bj) |
108 |
#endif |
#endif |
109 |
C FOR NON-INTERACTIVE Si |
C FOR NON-INTERACTIVE Si |
110 |
surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj) |
surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj) |
111 |
|
#ifdef DIC_BOUNDS |
112 |
|
surftemp(i,j) = max(-4. _d 0, |
113 |
|
& min(50. _d 0, theta(i,j,kLev,bi,bj))) |
114 |
|
surfsalt(i,j) = max(4. _d 0, |
115 |
|
& min(50. _d 0, salt(i,j,kLev,bi,bj))) |
116 |
|
surfdic(i,j) = max(0.4 _d 0, |
117 |
|
& min(10. _d 0, PTR_CO2(i,j,kLev))) |
118 |
|
#else |
119 |
|
surftemp(i,j) = theta(i,j,kLev,bi,bj) |
120 |
|
surfsalt(i,j) = salt(i,j,kLev,bi,bj) |
121 |
|
surfdic(i,j) = PTR_CO2(i,j,kLev) |
122 |
|
#endif |
123 |
ENDDO |
ENDDO |
124 |
ENDDO |
ENDDO |
125 |
|
|
126 |
CALL CARBON_COEFFS( |
CALL CARBON_COEFFS( |
127 |
I theta,salt, |
I surftemp,surfsalt, |
128 |
I bi,bj,iMin,iMax,jMin,jMax) |
I bi,bj,iMin,iMax,jMin,jMax,myThid) |
129 |
C==================================================================== |
C==================================================================== |
130 |
|
|
131 |
|
DO j=jmin,jmax |
132 |
|
DO i=imin,imax |
133 |
|
C Compute AtmosP and Kwexch_Pre which are re-used for flux of O2 |
134 |
|
|
135 |
|
#ifdef USE_PLOAD |
136 |
|
C Convert anomalous pressure pLoad (in Pa) from atmospheric model |
137 |
|
C to total pressure (in Atm) |
138 |
|
C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb |
139 |
|
C rather than the actual ref. pressure from Atm. model so that on |
140 |
|
C average AtmosP is about 1 Atm. |
141 |
|
AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm |
142 |
|
#endif |
143 |
|
|
144 |
|
C Pre-compute part of exchange coefficient: pisvel*(1-fice) |
145 |
|
C Schmidt number is accounted for later |
146 |
|
pisvel(i,j)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5 |
147 |
|
Kwexch_Pre(i,j,bi,bj) = pisvel(i,j) |
148 |
|
& * (1. _d 0 - FIce(i,j,bi,bj)) |
149 |
|
|
150 |
|
ENDDO |
151 |
|
ENDDO |
152 |
|
|
153 |
c pCO2 solver... |
c pCO2 solver... |
154 |
C$TAF LOOP = parallel |
C$TAF LOOP = parallel |
155 |
DO j=jmin,jmax |
DO j=jmin,jmax |
156 |
C$TAF LOOP = parallel |
C$TAF LOOP = parallel |
157 |
DO i=imin,imax |
DO i=imin,imax |
158 |
|
|
159 |
IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN |
IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN |
160 |
CALL CALC_PCO2_APPROX( |
CALL CALC_PCO2_APPROX( |
161 |
I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), |
I surftemp(i,j),surfsalt(i,j), |
162 |
I PTR_CO2(i,j,kLev), surfphos(i,j), |
I surfdic(i,j), surfphos(i,j), |
163 |
I surfsi(i,j),surfalk(i,j), |
I surfsi(i,j),surfalk(i,j), |
164 |
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
165 |
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
166 |
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
167 |
I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), |
I aksi(i,j,bi,bj),akf(i,j,bi,bj), |
168 |
|
I ak0(i,j,bi,bj), fugf(i,j,bi,bj), |
169 |
|
I ff(i,j,bi,bj), |
170 |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
171 |
U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) |
U pH(i,j,bi,bj),pCO2(i,j,bi,bj),co3dummy, |
172 |
|
I i,j,kLev,bi,bj,myIter,myThid ) |
173 |
ELSE |
ELSE |
174 |
pCO2(i,j,bi,bj)=0. _d 0 |
pCO2(i,j,bi,bj)=0. _d 0 |
175 |
END IF |
ENDIF |
176 |
ENDDO |
ENDDO |
177 |
ENDDO |
ENDDO |
178 |
|
|
179 |
DO j=jmin,jmax |
DO j=jmin,jmax |
180 |
DO i=imin,imax |
DO i=imin,imax |
181 |
|
|
182 |
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN |
183 |
C calculate SCHMIDT NO. for CO2 |
C calculate SCHMIDT NO. for CO2 |
184 |
SchmidtNoDIC(i,j) = |
SchmidtNoDIC(i,j) = |
185 |
& sca1 |
& sca1 |
186 |
& + sca2 * theta(i,j,kLev,bi,bj) |
& + sca2 * theta(i,j,kLev,bi,bj) |
187 |
& + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
& + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
188 |
& + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
& + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
189 |
& *theta(i,j,kLev,bi,bj) |
& *theta(i,j,kLev,bi,bj) |
190 |
|
c make sure Schmidt number is not negative (will happen if temp>39C) |
191 |
c |
SchmidtNoDIC(i,j)=max(1.0 _d -2, SchmidtNoDIC(i,j)) |
|
#ifdef USE_PLOAD |
|
|
c convert from Pa to atmos |
|
|
AtmosP(i,j,bi,bj)=pLoad(i,j,bi,bj)/1.01295e5 |
|
|
#endif |
|
192 |
|
|
193 |
C Determine surface flux (FDIC) |
C Determine surface flux (FDIC) |
194 |
C first correct pCO2at for surface atmos pressure |
C first correct pCO2at for surface atmos pressure |
195 |
pCO2sat(i,j) = |
pCO2sat(i,j) = |
196 |
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
|
c find exchange coefficient |
|
|
c account for schmidt number and and varible piston velocity |
|
|
pisvel(i,j,bi,bj) =0.337*wind(i,j,bi,bj)**2/3.6d5 |
|
|
Kwexch(i,j) = |
|
|
& pisvel(i,j,bi,bj) |
|
|
& / sqrt(SchmidtNoDIC(i,j)/660.0) |
|
|
c OR use a constant coeff |
|
|
c Kwexch(i,j) = 5e-5 |
|
|
c ice influence |
|
|
Kwexch(i,j) =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j) |
|
197 |
|
|
198 |
|
C then account for Schmidt number |
199 |
|
Kwexch(i,j) = Kwexch_Pre(i,j,bi,bj) |
200 |
|
& / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0) |
201 |
|
|
202 |
|
#ifdef WATERVAP_BUG |
203 |
C Calculate flux in terms of DIC units using K0, solubility |
C Calculate flux in terms of DIC units using K0, solubility |
204 |
C Flux = Vp * ([CO2sat] - [CO2]) |
C Flux = Vp * ([CO2sat] - [CO2]) |
205 |
C CO2sat = K0*pCO2atmos*P/P0 |
C CO2sat = K0*pCO2atmos*P/P0 |
206 |
C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 |
C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 |
207 |
FluxCO2(i,j,bi,bj) = |
FluxCO2(i,j,bi,bj) = |
208 |
& maskC(i,j,kLev,bi,bj)*Kwexch(i,j)*( |
& Kwexch(i,j)*( |
209 |
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
210 |
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
211 |
& ) |
& ) |
212 |
ELSE |
#else |
213 |
FluxCO2(i,j,bi,bj) = 0. |
C Corrected by Val Bennington Nov 2010 per G.A. McKinley s finding |
214 |
ENDIF |
C of error in application of water vapor correction |
215 |
|
c Flux = kw*rho*(ff*pCO2atm-k0*FugFac*pCO2ocean) |
216 |
|
FluxCO2(i,j,bi,bj) = |
217 |
|
& Kwexch(i,j)*( |
218 |
|
& ff(i,j,bi,bj)*pCO2sat(i,j) - |
219 |
|
& pCO2(i,j,bi,bj)*fugf(i,j,bi,bj) |
220 |
|
& *ak0(i,j,bi,bj) ) |
221 |
|
& |
222 |
|
#endif |
223 |
|
ELSE |
224 |
|
FluxCO2(i,j,bi,bj) = 0. _d 0 |
225 |
|
ENDIF |
226 |
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
227 |
FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil |
FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil |
228 |
|
|
229 |
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
#ifdef ALLOW_OLD_VIRTUALFLUX |
230 |
|
IF (maskC(i,j,kLev,bi,bj).NE.0. _d 0) THEN |
231 |
c calculate virtual flux |
c calculate virtual flux |
232 |
c EminusPforV = dS/dt*(1/Sglob) |
c EminusPforV = dS/dt*(1/Sglob) |
233 |
C NOTE: Be very careful with signs here! |
C NOTE: Be very careful with signs here! |
243 |
ELSE |
ELSE |
244 |
VirtualFlux(i,j)=0. _d 0 |
VirtualFlux(i,j)=0. _d 0 |
245 |
ENDIF |
ENDIF |
246 |
|
#endif /* ALLOW_OLD_VIRTUALFLUX */ |
247 |
ENDDO |
ENDDO |
248 |
ENDDO |
ENDDO |
249 |
|
|
250 |
C update tendency |
C update tendency |
251 |
DO j=jmin,jmax |
DO j=jmin,jmax |
252 |
DO i=imin,imax |
DO i=imin,imax |
253 |
GDC(i,j)= maskC(i,j,kLev,bi,bj)*recip_drF(kLev)* |
GDC(i,j)= recip_drF(kLev)*recip_hFacC(i,j,kLev,bi,bj) |
254 |
& recip_hFacC(i,j,kLev,bi,bj)*( |
& *(FluxCO2(i,j,bi,bj) |
255 |
& FluxCO2(i,j,bi,bj) + VirtualFlux(i,j) |
#ifdef ALLOW_OLD_VIRTUALFLUX |
256 |
& ) |
& + VirtualFlux(i,j) |
257 |
|
#endif |
258 |
|
& ) |
259 |
ENDDO |
ENDDO |
260 |
ENDDO |
ENDDO |
261 |
|
|