66 |
|
|
67 |
kLev=1 |
kLev=1 |
68 |
|
|
69 |
c if coupled to atmsopheric model, use the |
cc if coupled to atmsopheric model, use the |
70 |
c Co2 value passed from the coupler |
cc Co2 value passed from the coupler |
71 |
#ifndef USE_ATMOSCO2 |
c#ifndef USE_ATMOSCO2 |
72 |
C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv |
cC PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv |
73 |
DO j=1-OLy,sNy+OLy |
c DO j=1-OLy,sNy+OLy |
74 |
DO i=1-OLx,sNx+OLx |
c DO i=1-OLx,sNx+OLx |
75 |
AtmospCO2(i,j,bi,bj)=278.0 _d -6 |
c AtmospCO2(i,j,bi,bj)=278.0 _d -6 |
76 |
ENDDO |
c ENDDO |
77 |
ENDDO |
c ENDDO |
78 |
#endif |
c#endif |
79 |
|
|
80 |
|
|
81 |
C ================================================================= |
C ================================================================= |
132 |
C$TAF LOOP = parallel |
C$TAF LOOP = parallel |
133 |
DO i=imin,imax |
DO i=imin,imax |
134 |
|
|
135 |
IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN |
IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN |
136 |
CALL CALC_PCO2_APPROX( |
CALL CALC_PCO2_APPROX( |
137 |
I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), |
I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), |
138 |
I PTR_CO2(i,j,kLev), surfphos(i,j), |
I PTR_CO2(i,j,kLev), surfphos(i,j), |
144 |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
145 |
U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) |
U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) |
146 |
ELSE |
ELSE |
147 |
pCO2(i,j,bi,bj)=0. _d 0 |
pCO2(i,j,bi,bj)=0. _d 0 |
148 |
END IF |
ENDIF |
149 |
ENDDO |
ENDDO |
150 |
ENDDO |
ENDDO |
151 |
|
|
152 |
DO j=jmin,jmax |
DO j=jmin,jmax |
153 |
DO i=imin,imax |
DO i=imin,imax |
154 |
|
|
155 |
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN |
156 |
C calculate SCHMIDT NO. for CO2 |
C calculate SCHMIDT NO. for CO2 |
157 |
SchmidtNoDIC(i,j) = |
SchmidtNoDIC(i,j) = |
158 |
& sca1 |
& sca1 |
179 |
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
180 |
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
181 |
& ) |
& ) |
182 |
ELSE |
ELSE |
183 |
FluxCO2(i,j,bi,bj) = 0. _d 0 |
FluxCO2(i,j,bi,bj) = 0. _d 0 |
184 |
ENDIF |
ENDIF |
185 |
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
186 |
FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil |
FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil |
187 |
|
|
188 |
#ifdef ALLOW_OLD_VIRTUALFLUX |
#ifdef ALLOW_OLD_VIRTUALFLUX |
189 |
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
IF (maskC(i,j,kLev,bi,bj).NE.0. _d 0) THEN |
190 |
c calculate virtual flux |
c calculate virtual flux |
191 |
c EminusPforV = dS/dt*(1/Sglob) |
c EminusPforV = dS/dt*(1/Sglob) |
192 |
C NOTE: Be very careful with signs here! |
C NOTE: Be very careful with signs here! |