1 |
C $Header: /u/gcmpack/MITgcm/pkg/dic/dic_surfforcing.F,v 1.15 2007/08/14 19:32:40 dfer Exp $ |
2 |
C $Name: $ |
3 |
|
4 |
#include "DIC_OPTIONS.h" |
5 |
#include "PTRACERS_OPTIONS.h" |
6 |
#include "GCHEM_OPTIONS.h" |
7 |
|
8 |
CBOP |
9 |
C !ROUTINE: DIC_SURFFORCING |
10 |
|
11 |
C !INTERFACE: ========================================================== |
12 |
SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC, |
13 |
I bi,bj,imin,imax,jmin,jmax, |
14 |
I myIter,myTime,myThid) |
15 |
|
16 |
C !DESCRIPTION: |
17 |
C Calculate the carbon air-sea flux terms |
18 |
C following external_forcing_dic.F (OCMIP run) from Mick |
19 |
|
20 |
C !USES: =============================================================== |
21 |
IMPLICIT NONE |
22 |
#include "SIZE.h" |
23 |
#include "DYNVARS.h" |
24 |
#include "EEPARAMS.h" |
25 |
#include "PARAMS.h" |
26 |
#include "GRID.h" |
27 |
#include "FFIELDS.h" |
28 |
#include "DIC_ABIOTIC.h" |
29 |
|
30 |
C !INPUT PARAMETERS: =================================================== |
31 |
C myThid :: thread number |
32 |
C myIter :: current timestep |
33 |
C myTime :: current time |
34 |
c PTR_CO2 :: DIC tracer field |
35 |
INTEGER myIter, myThid |
36 |
_RL myTime |
37 |
_RL PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
38 |
_RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
39 |
_RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
40 |
INTEGER iMin,iMax,jMin,jMax, bi, bj |
41 |
|
42 |
C !OUTPUT PARAMETERS: =================================================== |
43 |
c GDC :: tendency due to air-sea exchange |
44 |
_RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
45 |
|
46 |
#ifdef ALLOW_PTRACERS |
47 |
|
48 |
C !LOCAL VARIABLES: ==================================================== |
49 |
INTEGER I,J, kLev, it |
50 |
C Number of iterations for pCO2 solvers... |
51 |
C Solubility relation coefficients |
52 |
_RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
53 |
_RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
54 |
_RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
55 |
C local variables for carbon chem |
56 |
_RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
57 |
_RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
58 |
_RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
59 |
#ifdef ALLOW_OLD_VIRTUALFLUX |
60 |
_RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
61 |
#endif |
62 |
CEOP |
63 |
|
64 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
65 |
|
66 |
kLev=1 |
67 |
|
68 |
c if coupled to atmsopheric model, use the |
69 |
c Co2 value passed from the coupler |
70 |
#ifndef USE_ATMOSCO2 |
71 |
C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv |
72 |
DO j=1-OLy,sNy+OLy |
73 |
DO i=1-OLx,sNx+OLx |
74 |
AtmospCO2(i,j,bi,bj)=278.0 _d -6 |
75 |
ENDDO |
76 |
ENDDO |
77 |
#endif |
78 |
|
79 |
|
80 |
C ================================================================= |
81 |
C determine inorganic carbon chem coefficients |
82 |
DO j=jmin,jmax |
83 |
DO i=imin,imax |
84 |
|
85 |
#ifdef DIC_BIOTIC |
86 |
cQQQQ check ptracer numbers |
87 |
surfalk(i,j) = PTR_ALK(i,j,klev) |
88 |
& * maskC(i,j,kLev,bi,bj) |
89 |
surfphos(i,j) = PTR_PO4(i,j,klev) |
90 |
& * maskC(i,j,kLev,bi,bj) |
91 |
#else |
92 |
surfalk(i,j) = 2.366595 _d 0 * salt(i,j,kLev,bi,bj)/gsm_s |
93 |
& * maskC(i,j,kLev,bi,bj) |
94 |
surfphos(i,j) = 5.1225 _d -4 * maskC(i,j,kLev,bi,bj) |
95 |
#endif |
96 |
C FOR NON-INTERACTIVE Si |
97 |
surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj) |
98 |
ENDDO |
99 |
ENDDO |
100 |
|
101 |
CALL CARBON_COEFFS( |
102 |
I theta,salt, |
103 |
I bi,bj,iMin,iMax,jMin,jMax) |
104 |
C==================================================================== |
105 |
|
106 |
c pCO2 solver... |
107 |
C$TAF LOOP = parallel |
108 |
DO j=jmin,jmax |
109 |
C$TAF LOOP = parallel |
110 |
DO i=imin,imax |
111 |
|
112 |
IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN |
113 |
CALL CALC_PCO2_APPROX( |
114 |
I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), |
115 |
I PTR_CO2(i,j,kLev), surfphos(i,j), |
116 |
I surfsi(i,j),surfalk(i,j), |
117 |
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
118 |
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
119 |
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
120 |
I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), |
121 |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
122 |
U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) |
123 |
ELSE |
124 |
pCO2(i,j,bi,bj)=0. _d 0 |
125 |
END IF |
126 |
ENDDO |
127 |
ENDDO |
128 |
|
129 |
DO j=jmin,jmax |
130 |
DO i=imin,imax |
131 |
|
132 |
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
133 |
C calculate SCHMIDT NO. for CO2 |
134 |
SchmidtNoDIC(i,j) = |
135 |
& sca1 |
136 |
& + sca2 * theta(i,j,kLev,bi,bj) |
137 |
& + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
138 |
& + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
139 |
& *theta(i,j,kLev,bi,bj) |
140 |
|
141 |
c |
142 |
#ifdef USE_PLOAD |
143 |
C Convert anomalous pressure pLoad (in Pa) from atmospheric model |
144 |
C to total pressure (in Atm) |
145 |
C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb |
146 |
C rather than the actual ref. pressure from Atm. model so that on |
147 |
C average AtmosP is about 1 Atm. |
148 |
AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm |
149 |
#endif |
150 |
|
151 |
C Determine surface flux (FDIC) |
152 |
C first correct pCO2at for surface atmos pressure |
153 |
pCO2sat(i,j) = |
154 |
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
155 |
c find exchange coefficient |
156 |
c account for schmidt number and and varible piston velocity |
157 |
pisvel(i,j,bi,bj)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5 |
158 |
Kwexch(i,j) = |
159 |
& pisvel(i,j,bi,bj) |
160 |
& / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0) |
161 |
c OR use a constant coeff |
162 |
c Kwexch(i,j) = 5e-5 |
163 |
c ice influence |
164 |
Kwexch(i,j) =(1. _d 0 - FIce(i,j,bi,bj))*Kwexch(i,j) |
165 |
|
166 |
|
167 |
C Calculate flux in terms of DIC units using K0, solubility |
168 |
C Flux = Vp * ([CO2sat] - [CO2]) |
169 |
C CO2sat = K0*pCO2atmos*P/P0 |
170 |
C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 |
171 |
FluxCO2(i,j,bi,bj) = |
172 |
& maskC(i,j,kLev,bi,bj)*Kwexch(i,j)*( |
173 |
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
174 |
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
175 |
& ) |
176 |
ELSE |
177 |
FluxCO2(i,j,bi,bj) = 0. _d 0 |
178 |
ENDIF |
179 |
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
180 |
FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil |
181 |
|
182 |
#ifdef ALLOW_OLD_VIRTUALFLUX |
183 |
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
184 |
c calculate virtual flux |
185 |
c EminusPforV = dS/dt*(1/Sglob) |
186 |
C NOTE: Be very careful with signs here! |
187 |
C Positive EminusPforV => loss of water to atmos and increase |
188 |
C in salinity. Thus, also increase in other surface tracers |
189 |
C (i.e. positive virtual flux into surface layer) |
190 |
C ...so here, VirtualFLux = dC/dt! |
191 |
VirtualFlux(i,j)=gsm_DIC*surfaceForcingS(i,j,bi,bj)/gsm_s |
192 |
c OR |
193 |
c let virtual flux be zero |
194 |
c VirtualFlux(i,j)=0.d0 |
195 |
c |
196 |
ELSE |
197 |
VirtualFlux(i,j)=0. _d 0 |
198 |
ENDIF |
199 |
#endif /* ALLOW_OLD_VIRTUALFLUX */ |
200 |
ENDDO |
201 |
ENDDO |
202 |
|
203 |
C update tendency |
204 |
DO j=jmin,jmax |
205 |
DO i=imin,imax |
206 |
GDC(i,j)= maskC(i,j,kLev,bi,bj)*recip_drF(kLev)* |
207 |
& recip_hFacC(i,j,kLev,bi,bj) |
208 |
& *(FluxCO2(i,j,bi,bj) |
209 |
#ifdef ALLOW_OLD_VIRTUALFLUX |
210 |
& + VirtualFlux(i,j) |
211 |
#endif |
212 |
& ) |
213 |
ENDDO |
214 |
ENDDO |
215 |
|
216 |
#endif |
217 |
RETURN |
218 |
END |