8 |
C !ROUTINE: DIC_SURFFORCING |
C !ROUTINE: DIC_SURFFORCING |
9 |
|
|
10 |
C !INTERFACE: ========================================================== |
C !INTERFACE: ========================================================== |
11 |
SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC, |
SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC, |
12 |
I bi,bj,imin,imax,jmin,jmax, |
I bi,bj,imin,imax,jmin,jmax, |
13 |
I myIter,myTime,myThid) |
I myIter,myTime,myThid) |
14 |
|
|
15 |
C !DESCRIPTION: |
C !DESCRIPTION: |
16 |
C Calculate the carbon air-sea flux terms |
C Calculate the carbon air-sea flux terms |
17 |
C following external_forcing_dic.F (OCMIP run) from Mick |
C following external_forcing_dic.F (OCMIP run) from Mick |
18 |
|
|
19 |
C !USES: =============================================================== |
C !USES: =============================================================== |
20 |
IMPLICIT NONE |
IMPLICIT NONE |
142 |
I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), |
I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), |
143 |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
144 |
U pH(i,j,bi,bj),pCO2(i,j,bi,bj), |
U pH(i,j,bi,bj),pCO2(i,j,bi,bj), |
145 |
I myThid ) |
I i,j,kLev,bi,bj,myIter,myThid ) |
146 |
ELSE |
ELSE |
147 |
pCO2(i,j,bi,bj)=0. _d 0 |
pCO2(i,j,bi,bj)=0. _d 0 |
148 |
ENDIF |
ENDIF |
154 |
|
|
155 |
IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN |
IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN |
156 |
C calculate SCHMIDT NO. for CO2 |
C calculate SCHMIDT NO. for CO2 |
157 |
SchmidtNoDIC(i,j) = |
SchmidtNoDIC(i,j) = |
158 |
& sca1 |
& sca1 |
159 |
& + sca2 * theta(i,j,kLev,bi,bj) |
& + sca2 * theta(i,j,kLev,bi,bj) |
160 |
& + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
& + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
161 |
& + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
& + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
162 |
& *theta(i,j,kLev,bi,bj) |
& *theta(i,j,kLev,bi,bj) |
163 |
|
|
164 |
C Determine surface flux (FDIC) |
C Determine surface flux (FDIC) |
165 |
C first correct pCO2at for surface atmos pressure |
C first correct pCO2at for surface atmos pressure |
166 |
pCO2sat(i,j) = |
pCO2sat(i,j) = |
167 |
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
168 |
|
|
169 |
C then account for Schmidt number |
C then account for Schmidt number |
174 |
C Flux = Vp * ([CO2sat] - [CO2]) |
C Flux = Vp * ([CO2sat] - [CO2]) |
175 |
C CO2sat = K0*pCO2atmos*P/P0 |
C CO2sat = K0*pCO2atmos*P/P0 |
176 |
C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 |
C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 |
177 |
FluxCO2(i,j,bi,bj) = |
FluxCO2(i,j,bi,bj) = |
178 |
& Kwexch(i,j)*( |
& Kwexch(i,j)*( |
179 |
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
180 |
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
181 |
& ) |
& ) |
182 |
ELSE |
ELSE |
183 |
FluxCO2(i,j,bi,bj) = 0. _d 0 |
FluxCO2(i,j,bi,bj) = 0. _d 0 |
184 |
ENDIF |
ENDIF |
206 |
ENDDO |
ENDDO |
207 |
ENDDO |
ENDDO |
208 |
|
|
209 |
C update tendency |
C update tendency |
210 |
DO j=jmin,jmax |
DO j=jmin,jmax |
211 |
DO i=imin,imax |
DO i=imin,imax |
212 |
GDC(i,j)= recip_drF(kLev)*recip_hFacC(i,j,kLev,bi,bj) |
GDC(i,j)= recip_drF(kLev)*recip_hFacC(i,j,kLev,bi,bj) |
213 |
& *(FluxCO2(i,j,bi,bj) |
& *(FluxCO2(i,j,bi,bj) |
214 |
#ifdef ALLOW_OLD_VIRTUALFLUX |
#ifdef ALLOW_OLD_VIRTUALFLUX |
215 |
& + VirtualFlux(i,j) |
& + VirtualFlux(i,j) |
216 |
#endif |
#endif |