42 |
INTEGER iMin,iMax,jMin,jMax, bi, bj |
INTEGER iMin,iMax,jMin,jMax, bi, bj |
43 |
|
|
44 |
C !OUTPUT PARAMETERS: =================================================== |
C !OUTPUT PARAMETERS: =================================================== |
45 |
c GDC :: surface flux due to air-sea exchange |
c GDC :: tendency due to air-sea exchange |
46 |
_RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
_RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
47 |
|
|
48 |
#ifdef ALLOW_PTRACERS |
#ifdef ALLOW_PTRACERS |
75 |
|
|
76 |
C ================================================================= |
C ================================================================= |
77 |
C determine inorganic carbon chem coefficients |
C determine inorganic carbon chem coefficients |
78 |
DO j=1-OLy,sNy+OLy |
DO j=jmin,jmax |
79 |
DO i=1-OLx,sNx+OLx |
DO i=imin,imax |
80 |
|
|
81 |
#ifdef DIC_BIOTIC |
#ifdef DIC_BIOTIC |
82 |
cQQQQ check ptracer numbers |
cQQQQ check ptracer numbers |
101 |
|
|
102 |
c pCO2 solver... |
c pCO2 solver... |
103 |
C$TAF LOOP = parallel |
C$TAF LOOP = parallel |
104 |
DO j=1-OLy,sNy+OLy |
DO j=jmin,jmax |
105 |
C$TAF LOOP = parallel |
C$TAF LOOP = parallel |
106 |
DO i=1-OLx,sNx+OLx |
DO i=imin,imax |
107 |
|
|
108 |
IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN |
IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN |
109 |
CALL CALC_PCO2_APPROX( |
CALL CALC_PCO2_APPROX( |
122 |
ENDDO |
ENDDO |
123 |
ENDDO |
ENDDO |
124 |
|
|
125 |
DO j=1-OLy,sNy+OLy |
DO j=jmin,jmax |
126 |
DO i=1-OLx,sNx+OLx |
DO i=imin,imax |
127 |
|
|
128 |
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
129 |
C calculate SCHMIDT NO. for CO2 |
C calculate SCHMIDT NO. for CO2 |
140 |
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
141 |
c find exchange coefficient |
c find exchange coefficient |
142 |
c account for schmidt number and and varible piston velocity |
c account for schmidt number and and varible piston velocity |
143 |
|
pisvel(i,j,bi,bj) =0.337*wind(i,j,bi,bj)**2/3.6d5 |
144 |
Kwexch(i,j) = |
Kwexch(i,j) = |
145 |
& pisvel(i,j,bi,bj) |
& pisvel(i,j,bi,bj) |
146 |
& / sqrt(SchmidtNoDIC(i,j)/660.0) |
& / sqrt(SchmidtNoDIC(i,j)/660.0) |
147 |
c OR use a constant coeff |
c OR use a constant coeff |
148 |
c Kwexch(i,j) = 5e-5 |
c Kwexch(i,j) = 5e-5 |
149 |
c ice influence |
c ice influence |
150 |
cQQ Kwexch(i,j) =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j) |
Kwexch(i,j) =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j) |
151 |
|
|
152 |
|
|
153 |
C Calculate flux in terms of DIC units using K0, solubility |
C Calculate flux in terms of DIC units using K0, solubility |
185 |
ENDDO |
ENDDO |
186 |
|
|
187 |
C update tendency |
C update tendency |
188 |
DO j=1-OLy,sNy+OLy |
DO j=jmin,jmax |
189 |
DO i=1-OLx,sNx+OLx |
DO i=imin,imax |
190 |
GDC(i,j)= maskC(i,j,kLev,bi,bj)*( |
GDC(i,j)= maskC(i,j,kLev,bi,bj)*recip_drF(kLev)* |
191 |
& FluxCO2(i,j,bi,bj) |
& recip_hFacC(i,j,kLev,bi,bj)*( |
192 |
& + VirtualFlux(i,j) |
& FluxCO2(i,j,bi,bj) + VirtualFlux(i,j) |
193 |
& ) |
& ) |
194 |
ENDDO |
ENDDO |
195 |
ENDDO |
ENDDO |