| 1 |
#include "CPP_OPTIONS.h" |
| 2 |
#include "PTRACERS_OPTIONS.h" |
| 3 |
#include "GCHEM_OPTIONS.h" |
| 4 |
|
| 5 |
CStartOfInterFace |
| 6 |
SUBROUTINE DIC_SURFFORCING( PTR_CO2 , GDC, |
| 7 |
I bi,bj,imin,imax,jmin,jmax, |
| 8 |
I myIter,myTime,myThid) |
| 9 |
|
| 10 |
C /==========================================================\ |
| 11 |
C | SUBROUTINE DIC_SURFFORCING | |
| 12 |
C | o Calculate the carbon air-sea flux terms | |
| 13 |
C | o following external_forcing_dic.F from Mick | |
| 14 |
C |==========================================================| |
| 15 |
IMPLICIT NONE |
| 16 |
|
| 17 |
C == GLobal variables == |
| 18 |
#include "SIZE.h" |
| 19 |
#include "DYNVARS.h" |
| 20 |
#include "EEPARAMS.h" |
| 21 |
#include "PARAMS.h" |
| 22 |
#include "GRID.h" |
| 23 |
#include "FFIELDS.h" |
| 24 |
#include "DIC_ABIOTIC.h" |
| 25 |
#ifdef DIC_BIOTIC |
| 26 |
#include "PTRACERS.h" |
| 27 |
#endif |
| 28 |
|
| 29 |
C == Routine arguments == |
| 30 |
INTEGER myIter, myThid |
| 31 |
_RL myTime |
| 32 |
_RL PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 33 |
_RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 34 |
INTEGER iMin,iMax,jMin,jMax, bi, bj |
| 35 |
|
| 36 |
#ifdef ALLOW_PTRACERS |
| 37 |
C == Local variables == |
| 38 |
INTEGER I,J, kLev, it |
| 39 |
C Number of iterations for pCO2 solvers... |
| 40 |
C Solubility relation coefficients |
| 41 |
_RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 42 |
_RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 43 |
_RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 44 |
C local variables for carbon chem |
| 45 |
_RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 46 |
_RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 47 |
_RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 48 |
_RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 49 |
|
| 50 |
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 51 |
|
| 52 |
kLev=1 |
| 53 |
|
| 54 |
C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv |
| 55 |
DO j=1-OLy,sNy+OLy |
| 56 |
DO i=1-OLx,sNx+OLx |
| 57 |
AtmospCO2(i,j,bi,bj)=278.0d-6 |
| 58 |
ENDDO |
| 59 |
ENDDO |
| 60 |
|
| 61 |
|
| 62 |
C ================================================================= |
| 63 |
C determine inorganic carbon chem coefficients |
| 64 |
DO j=1-OLy,sNy+OLy |
| 65 |
DO i=1-OLx,sNx+OLx |
| 66 |
|
| 67 |
#ifdef DIC_BIOTIC |
| 68 |
cQQQQ check ptracer numbers |
| 69 |
surfalk(i,j) = PTRACER(i,j,klev,bi,bj,2) |
| 70 |
& * maskC(i,j,kLev,bi,bj) |
| 71 |
surfphos(i,j) = PTRACER(i,j,klev,bi,bj,3) |
| 72 |
& * maskC(i,j,kLev,bi,bj) |
| 73 |
#else |
| 74 |
surfalk(i,j) = 2.366595 * salt(i,j,kLev,bi,bj)/gsm_s |
| 75 |
& * maskC(i,j,kLev,bi,bj) |
| 76 |
surfphos(i,j) = 5.1225e-4 * maskC(i,j,kLev,bi,bj) |
| 77 |
#endif |
| 78 |
C FOR NON-INTERACTIVE Si |
| 79 |
surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj) |
| 80 |
ENDDO |
| 81 |
ENDDO |
| 82 |
|
| 83 |
CALL CARBON_COEFFS( |
| 84 |
I theta,salt, |
| 85 |
I bi,bj,iMin,iMax,jMin,jMax) |
| 86 |
C==================================================================== |
| 87 |
|
| 88 |
c pCO2 solver... |
| 89 |
C$TAF LOOP = parallel |
| 90 |
DO j=1-OLy,sNy+OLy |
| 91 |
C$TAF LOOP = parallel |
| 92 |
DO i=1-OLx,sNx+OLx |
| 93 |
|
| 94 |
IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN |
| 95 |
CALL CALC_PCO2_APPROX( |
| 96 |
I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), |
| 97 |
I PTR_CO2(i,j,kLev), surfphos(i,j), |
| 98 |
I surfsi(i,j),surfalk(i,j), |
| 99 |
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
| 100 |
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
| 101 |
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
| 102 |
I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), |
| 103 |
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
| 104 |
U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) |
| 105 |
ELSE |
| 106 |
pCO2(i,j,bi,bj)=0. _d 0 |
| 107 |
END IF |
| 108 |
ENDDO |
| 109 |
ENDDO |
| 110 |
|
| 111 |
DO j=1-OLy,sNy+OLy |
| 112 |
DO i=1-OLx,sNx+OLx |
| 113 |
|
| 114 |
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
| 115 |
C calculate SCHMIDT NO. for CO2 |
| 116 |
SchmidtNoDIC(i,j) = |
| 117 |
& sca1 |
| 118 |
& + sca2 * theta(i,j,kLev,bi,bj) |
| 119 |
& + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
| 120 |
& + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
| 121 |
& *theta(i,j,kLev,bi,bj) |
| 122 |
|
| 123 |
C Determine surface flux (FDIC) |
| 124 |
C first correct pCO2at for surface atmos pressure |
| 125 |
pCO2sat(i,j) = |
| 126 |
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
| 127 |
c find exchange coefficient |
| 128 |
c account for schmidt number and and varible piston velocity |
| 129 |
Kwexch(i,j) = |
| 130 |
& pisvel(i,j,bi,bj) |
| 131 |
& / sqrt(SchmidtNoDIC(i,j)/660.0) |
| 132 |
c OR use a constant coeff |
| 133 |
c Kwexch(i,j) = 5e-5 |
| 134 |
c ice influence |
| 135 |
cQQ Kwexch(i,j) =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j) |
| 136 |
|
| 137 |
|
| 138 |
C Calculate flux in terms of DIC units using K0, solubility |
| 139 |
C Flux = Vp * ([CO2sat] - [CO2]) |
| 140 |
C CO2sat = K0*pCO2atmos*P/P0 |
| 141 |
C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 |
| 142 |
FluxCO2(i,j,bi,bj) = |
| 143 |
& maskC(i,j,kLev,bi,bj)*Kwexch(i,j)*( |
| 144 |
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
| 145 |
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
| 146 |
& ) |
| 147 |
ELSE |
| 148 |
FluxCO2(i,j,bi,bj) = 0. |
| 149 |
ENDIF |
| 150 |
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
| 151 |
FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil |
| 152 |
|
| 153 |
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
| 154 |
c calculate virtual flux |
| 155 |
c EminusPforV = dS/dt*(1/Sglob) |
| 156 |
C NOTE: Be very careful with signs here! |
| 157 |
C Positive EminusPforV => loss of water to atmos and increase |
| 158 |
C in salinity. Thus, also increase in other surface tracers |
| 159 |
C (i.e. positive virtual flux into surface layer) |
| 160 |
C ...so here, VirtualFLux = dC/dt! |
| 161 |
VirtualFlux(i,j)=gsm_DIC*surfaceTendencyS(i,j,bi,bj)/gsm_s |
| 162 |
c OR |
| 163 |
c let virtual flux be zero |
| 164 |
c VirtualFlux(i,j)=0.d0 |
| 165 |
c |
| 166 |
ELSE |
| 167 |
VirtualFlux(i,j)=0. _d 0 |
| 168 |
ENDIF |
| 169 |
ENDDO |
| 170 |
ENDDO |
| 171 |
|
| 172 |
C update tendency |
| 173 |
DO j=1-OLy,sNy+OLy |
| 174 |
DO i=1-OLx,sNx+OLx |
| 175 |
GDC(i,j)= maskC(i,j,kLev,bi,bj)*( |
| 176 |
& FluxCO2(i,j,bi,bj)*recip_drF(kLev) |
| 177 |
& + VirtualFlux(i,j) |
| 178 |
& ) |
| 179 |
ENDDO |
| 180 |
ENDDO |
| 181 |
|
| 182 |
#endif |
| 183 |
RETURN |
| 184 |
END |