#include "CPP_OPTIONS.h" #include "PTRACERS_OPTIONS.h" #include "GCHEM_OPTIONS.h" CStartOfInterFace SUBROUTINE DIC_SURFFORCING( PTR_CO2 , GDC, I bi,bj,imin,imax,jmin,jmax, I myIter,myTime,myThid) C /==========================================================\ C | SUBROUTINE DIC_SURFFORCING | C | o Calculate the carbon air-sea flux terms | C | o following external_forcing_dic.F from Mick | C |==========================================================| IMPLICIT NONE C == GLobal variables == #include "SIZE.h" #include "DYNVARS.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "FFIELDS.h" #include "DIC_ABIOTIC.h" #ifdef DIC_BIOTIC #include "PTRACERS.h" #endif C == Routine arguments == INTEGER myIter, myThid _RL myTime _RL PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) _RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER iMin,iMax,jMin,jMax, bi, bj #ifdef ALLOW_PTRACERS #ifdef DIC_ABIOTIC C == Local variables == INTEGER I,J, kLev, it C Number of iterations for pCO2 solvers... INTEGER inewtonmax INTEGER ibrackmax INTEGER donewt C Solubility relation coefficients _RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy) C local variables for carbon chem _RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc kLev=1 C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx AtmospCO2(i,j,bi,bj)=278.0d-6 ENDDO ENDDO C ================================================================= C determine inorganic carbon chem coefficients DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx #ifdef DIC_BIOTIC cQQQQ check ptracer numbers surfalk(i,j) = PTRACER(i,j,klev,bi,bj,2) & * maskC(i,j,kLev,bi,bj) surfphos(i,j) = PTRACER(i,j,klev,bi,bj,3) & * maskC(i,j,kLev,bi,bj) #else surfalk(i,j) = 2.366595 * salt(i,j,kLev,bi,bj)/gsm_s & * maskC(i,j,kLev,bi,bj) surfphos(i,j) = 5.1225e-4 * maskC(i,j,kLev,bi,bj) #endif C FOR NON-INTERACTIVE Si surfsi(i,j) = 7.6838e-3 * maskC(i,j,kLev,bi,bj) ENDDO ENDDO CALL CARBON_COEFFS( I theta,salt, I bi,bj,iMin,iMax,jMin,jMax) C==================================================================== #define PH_APPROX c set number of iterations for [H+] solvers #ifdef PH_APPROX inewtonmax = 1 #else inewtonmax = 10 #endif ibrackmax = 30 C determine pCO2 in surface ocean C set guess of pH for first step here C IF first step THEN use bracket-bisection for first step, C and determine carbon coefficients for safety C ELSE use newton-raphson with previous H+(x,y) as first guess donewt=1 c for first few timesteps IF(myIter .le. (nIter0+inewtonmax) )then donewt=0 DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx pH(i,j,bi,bj) = 8.0 ENDDO ENDDO #ifdef PH_APPROX print*,'QQ: pCO2 approximation method' c first approxmation DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx do it=1,10 CALL CALC_PCO2_APPROX( I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), I PTR_CO2(i,j,kLev), surfphos(i,j), I surfsi(i,j),surfalk(i,j), I ak1(i,j,bi,bj),ak2(i,j,bi,bj), I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) enddo ENDDO ENDDO #else print*,'QQ: pCO2 full method' #endif ENDIF c pCO2 solver... DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN #ifdef PH_APPROX CALL CALC_PCO2_APPROX( I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), I PTR_CO2(i,j,kLev), surfphos(i,j), I surfsi(i,j),surfalk(i,j), I ak1(i,j,bi,bj),ak2(i,j,bi,bj), I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) #else CALL CALC_PCO2(donewt,inewtonmax,ibrackmax, I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), I PTR_CO2(i,j,kLev), surfphos(i,j), I surfsi(i,j),surfalk(i,j), I ak1(i,j,bi,bj),ak2(i,j,bi,bj), I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) #endif ELSE pCO2(i,j,bi,bj)=0. _d 0 END IF ENDDO ENDDO DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN C calculate SCHMIDT NO. for CO2 SchmidtNoDIC(i,j) = & sca1 & + sca2 * theta(i,j,kLev,bi,bj) & + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) & + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) & *theta(i,j,kLev,bi,bj) C Determine surface flux (FDIC) C first correct pCO2at for surface atmos pressure pCO2sat(i,j) = & AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) c find exchange coefficient c account for schmidt number and and varible piston velocity Kwexch(i,j) = & pisvel(i,j,bi,bj) & / sqrt(SchmidtNoDIC(i,j)/660.0) c OR use a constant coeff c Kwexch(i,j) = 5e-5 c ice influence cQQ Kwexch(i,j) =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j) C Calculate flux in terms of DIC units using K0, solubility C Flux = Vp * ([CO2sat] - [CO2]) C CO2sat = K0*pCO2atmos*P/P0 C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 FluxCO2(i,j,bi,bj) = & maskC(i,j,kLev,bi,bj)*Kwexch(i,j)*( & ak0(i,j,bi,bj)*pCO2sat(i,j) - & ff(i,j,bi,bj)*pCO2(i,j,bi,bj) & ) ELSE FluxCO2(i,j,bi,bj) = 0. ENDIF C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN c calculate virtual flux c EminusPforV = dS/dt*(1/Sglob) C NOTE: Be very careful with signs here! C Positive EminusPforV => loss of water to atmos and increase C in salinity. Thus, also increase in other surface tracers C (i.e. positive virtual flux into surface layer) C ...so here, VirtualFLux = dC/dt! VirtualFlux(i,j)=gsm_DIC*surfaceTendencyS(i,j,bi,bj)/gsm_s c OR c let virtual flux be zero c VirtualFlux(i,j)=0.d0 c ELSE VirtualFlux(i,j)=0. _d 0 ENDIF ENDDO ENDDO C update tendency DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx GDC(i,j)= maskC(i,j,kLev,bi,bj)*( & FluxCO2(i,j,bi,bj)*recip_drF(kLev) & + VirtualFlux(i,j) & ) ENDDO ENDDO #endif #endif RETURN END