/[MITgcm]/MITgcm/pkg/dic/dic_surfforcing.F
ViewVC logotype

Annotation of /MITgcm/pkg/dic/dic_surfforcing.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.19 - (hide annotations) (download)
Mon Nov 5 21:01:37 2007 UTC (16 years, 7 months ago) by stephd
Branch: MAIN
CVS Tags: checkpoint59m, checkpoint59l, checkpoint59o, checkpoint59n, checkpoint59k, checkpoint59j
Changes since 1.18: +11 -11 lines
o adding flexibility for determining atmospheric pCO2
  (now defaults to 278d-6, can be read in from data.gchem, can be
   read in from file for time-varing values, and can be linked
   to interactive well mixed atmospheric box)

1 stephd 1.19 C $Header: /u/gcmpack/MITgcm/pkg/dic/dic_surfforcing.F,v 1.18 2007/10/26 21:08:13 dfer Exp $
2 jmc 1.6 C $Name: $
3    
4 edhill 1.4 #include "DIC_OPTIONS.h"
5 stephd 1.1 #include "PTRACERS_OPTIONS.h"
6     #include "GCHEM_OPTIONS.h"
7    
8 stephd 1.5 CBOP
9     C !ROUTINE: DIC_SURFFORCING
10    
11     C !INTERFACE: ==========================================================
12 stephd 1.12 SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC,
13 stephd 1.1 I bi,bj,imin,imax,jmin,jmax,
14     I myIter,myTime,myThid)
15    
16 stephd 1.5 C !DESCRIPTION:
17     C Calculate the carbon air-sea flux terms
18     C following external_forcing_dic.F (OCMIP run) from Mick
19    
20     C !USES: ===============================================================
21 stephd 1.1 IMPLICIT NONE
22     #include "SIZE.h"
23     #include "DYNVARS.h"
24     #include "EEPARAMS.h"
25     #include "PARAMS.h"
26     #include "GRID.h"
27     #include "FFIELDS.h"
28     #include "DIC_ABIOTIC.h"
29    
30 stephd 1.5 C !INPUT PARAMETERS: ===================================================
31     C myThid :: thread number
32     C myIter :: current timestep
33     C myTime :: current time
34     c PTR_CO2 :: DIC tracer field
35 stephd 1.1 INTEGER myIter, myThid
36     _RL myTime
37     _RL PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
38 stephd 1.12 _RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
39     _RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
40 stephd 1.5 INTEGER iMin,iMax,jMin,jMax, bi, bj
41    
42     C !OUTPUT PARAMETERS: ===================================================
43 stephd 1.8 c GDC :: tendency due to air-sea exchange
44 stephd 1.1 _RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
45    
46     #ifdef ALLOW_PTRACERS
47 stephd 1.5
48     C !LOCAL VARIABLES: ====================================================
49 stephd 1.2 INTEGER I,J, kLev, it
50 stephd 1.1 C Number of iterations for pCO2 solvers...
51     C Solubility relation coefficients
52     _RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
53     _RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
54     _RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
55 dfer 1.17 _RL pisvel(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
56 stephd 1.1 C local variables for carbon chem
57     _RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
58     _RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
59     _RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
60 dfer 1.16 #ifdef ALLOW_OLD_VIRTUALFLUX
61 stephd 1.1 _RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
62 dfer 1.16 #endif
63 stephd 1.5 CEOP
64 stephd 1.1
65     cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
66    
67     kLev=1
68    
69 stephd 1.19 cc if coupled to atmsopheric model, use the
70     cc Co2 value passed from the coupler
71     c#ifndef USE_ATMOSCO2
72     cC PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv
73     c DO j=1-OLy,sNy+OLy
74     c DO i=1-OLx,sNx+OLx
75     c AtmospCO2(i,j,bi,bj)=278.0 _d -6
76     c ENDDO
77     c ENDDO
78     c#endif
79 stephd 1.1
80    
81     C =================================================================
82     C determine inorganic carbon chem coefficients
83 stephd 1.10 DO j=jmin,jmax
84     DO i=imin,imax
85 stephd 1.1
86     #ifdef DIC_BIOTIC
87     cQQQQ check ptracer numbers
88 stephd 1.12 surfalk(i,j) = PTR_ALK(i,j,klev)
89 stephd 1.1 & * maskC(i,j,kLev,bi,bj)
90 stephd 1.12 surfphos(i,j) = PTR_PO4(i,j,klev)
91 stephd 1.1 & * maskC(i,j,kLev,bi,bj)
92     #else
93 dfer 1.15 surfalk(i,j) = 2.366595 _d 0 * salt(i,j,kLev,bi,bj)/gsm_s
94 stephd 1.1 & * maskC(i,j,kLev,bi,bj)
95 dfer 1.15 surfphos(i,j) = 5.1225 _d -4 * maskC(i,j,kLev,bi,bj)
96 stephd 1.1 #endif
97     C FOR NON-INTERACTIVE Si
98 stephd 1.3 surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj)
99 stephd 1.1 ENDDO
100     ENDDO
101    
102     CALL CARBON_COEFFS(
103     I theta,salt,
104     I bi,bj,iMin,iMax,jMin,jMax)
105     C====================================================================
106    
107 dfer 1.17 DO j=jmin,jmax
108     DO i=imin,imax
109     C Compute AtmosP and Kwexch_Pre which are re-used for flux of O2
110    
111     #ifdef USE_PLOAD
112     C Convert anomalous pressure pLoad (in Pa) from atmospheric model
113     C to total pressure (in Atm)
114     C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb
115     C rather than the actual ref. pressure from Atm. model so that on
116     C average AtmosP is about 1 Atm.
117     AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm
118     #endif
119    
120     C Pre-compute part of exchange coefficient: pisvel*(1-fice)
121     C Schmidt number is accounted for later
122     pisvel(i,j)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5
123     Kwexch_Pre(i,j,bi,bj) = pisvel(i,j)
124     & * (1. _d 0 - FIce(i,j,bi,bj))
125    
126     ENDDO
127     ENDDO
128    
129 stephd 1.1 c pCO2 solver...
130 stephd 1.3 C$TAF LOOP = parallel
131 stephd 1.10 DO j=jmin,jmax
132 stephd 1.3 C$TAF LOOP = parallel
133 stephd 1.10 DO i=imin,imax
134 stephd 1.1
135 dfer 1.18 IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN
136 stephd 1.1 CALL CALC_PCO2_APPROX(
137     I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj),
138     I PTR_CO2(i,j,kLev), surfphos(i,j),
139     I surfsi(i,j),surfalk(i,j),
140     I ak1(i,j,bi,bj),ak2(i,j,bi,bj),
141     I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj),
142     I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj),
143     I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj),
144     I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj),
145     U pH(i,j,bi,bj),pCO2(i,j,bi,bj) )
146     ELSE
147 dfer 1.18 pCO2(i,j,bi,bj)=0. _d 0
148     ENDIF
149 stephd 1.1 ENDDO
150     ENDDO
151    
152 stephd 1.10 DO j=jmin,jmax
153     DO i=imin,imax
154 stephd 1.1
155 dfer 1.18 IF ( maskC(i,j,kLev,bi,bj).NE.0. _d 0 ) THEN
156 stephd 1.1 C calculate SCHMIDT NO. for CO2
157     SchmidtNoDIC(i,j) =
158     & sca1
159     & + sca2 * theta(i,j,kLev,bi,bj)
160     & + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj)
161     & + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj)
162     & *theta(i,j,kLev,bi,bj)
163    
164     C Determine surface flux (FDIC)
165     C first correct pCO2at for surface atmos pressure
166     pCO2sat(i,j) =
167     & AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj)
168    
169 dfer 1.17 C then account for Schmidt number
170     Kwexch(i,j) = Kwexch_Pre(i,j,bi,bj)
171     & / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0)
172 stephd 1.1
173     C Calculate flux in terms of DIC units using K0, solubility
174     C Flux = Vp * ([CO2sat] - [CO2])
175     C CO2sat = K0*pCO2atmos*P/P0
176     C Converting pCO2 to [CO2] using ff, as in CALC_PCO2
177 stephd 1.2 FluxCO2(i,j,bi,bj) =
178 dfer 1.17 & Kwexch(i,j)*(
179 stephd 1.1 & ak0(i,j,bi,bj)*pCO2sat(i,j) -
180     & ff(i,j,bi,bj)*pCO2(i,j,bi,bj)
181     & )
182 dfer 1.18 ELSE
183     FluxCO2(i,j,bi,bj) = 0. _d 0
184     ENDIF
185 stephd 1.1 C convert flux (mol kg-1 m s-1) to (mol m-2 s-1)
186 stephd 1.2 FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil
187 stephd 1.1
188 dfer 1.16 #ifdef ALLOW_OLD_VIRTUALFLUX
189 dfer 1.18 IF (maskC(i,j,kLev,bi,bj).NE.0. _d 0) THEN
190 stephd 1.1 c calculate virtual flux
191     c EminusPforV = dS/dt*(1/Sglob)
192     C NOTE: Be very careful with signs here!
193     C Positive EminusPforV => loss of water to atmos and increase
194     C in salinity. Thus, also increase in other surface tracers
195     C (i.e. positive virtual flux into surface layer)
196     C ...so here, VirtualFLux = dC/dt!
197 jmc 1.7 VirtualFlux(i,j)=gsm_DIC*surfaceForcingS(i,j,bi,bj)/gsm_s
198 stephd 1.1 c OR
199     c let virtual flux be zero
200     c VirtualFlux(i,j)=0.d0
201     c
202     ELSE
203     VirtualFlux(i,j)=0. _d 0
204     ENDIF
205 dfer 1.16 #endif /* ALLOW_OLD_VIRTUALFLUX */
206 stephd 1.1 ENDDO
207     ENDDO
208    
209     C update tendency
210 stephd 1.10 DO j=jmin,jmax
211     DO i=imin,imax
212 dfer 1.17 GDC(i,j)= recip_drF(kLev)*recip_hFacC(i,j,kLev,bi,bj)
213     & *(FluxCO2(i,j,bi,bj)
214 dfer 1.16 #ifdef ALLOW_OLD_VIRTUALFLUX
215 dfer 1.17 & + VirtualFlux(i,j)
216 dfer 1.16 #endif
217 dfer 1.17 & )
218 stephd 1.1 ENDDO
219     ENDDO
220    
221     #endif
222     RETURN
223     END

  ViewVC Help
Powered by ViewVC 1.1.22