| 1 |
dfer |
1.15 |
C $Header: /u/gcmpack/MITgcm/pkg/dic/dic_surfforcing.F,v 1.14 2007/08/13 02:29:40 dfer Exp $ |
| 2 |
jmc |
1.6 |
C $Name: $ |
| 3 |
|
|
|
| 4 |
edhill |
1.4 |
#include "DIC_OPTIONS.h" |
| 5 |
stephd |
1.1 |
#include "PTRACERS_OPTIONS.h" |
| 6 |
|
|
#include "GCHEM_OPTIONS.h" |
| 7 |
|
|
|
| 8 |
stephd |
1.5 |
CBOP |
| 9 |
|
|
C !ROUTINE: DIC_SURFFORCING |
| 10 |
|
|
|
| 11 |
|
|
C !INTERFACE: ========================================================== |
| 12 |
stephd |
1.12 |
SUBROUTINE DIC_SURFFORCING( PTR_CO2 , PTR_ALK, PTR_PO4, GDC, |
| 13 |
stephd |
1.1 |
I bi,bj,imin,imax,jmin,jmax, |
| 14 |
|
|
I myIter,myTime,myThid) |
| 15 |
|
|
|
| 16 |
stephd |
1.5 |
C !DESCRIPTION: |
| 17 |
|
|
C Calculate the carbon air-sea flux terms |
| 18 |
|
|
C following external_forcing_dic.F (OCMIP run) from Mick |
| 19 |
|
|
|
| 20 |
|
|
C !USES: =============================================================== |
| 21 |
stephd |
1.1 |
IMPLICIT NONE |
| 22 |
|
|
#include "SIZE.h" |
| 23 |
|
|
#include "DYNVARS.h" |
| 24 |
|
|
#include "EEPARAMS.h" |
| 25 |
|
|
#include "PARAMS.h" |
| 26 |
|
|
#include "GRID.h" |
| 27 |
|
|
#include "FFIELDS.h" |
| 28 |
|
|
#include "DIC_ABIOTIC.h" |
| 29 |
|
|
|
| 30 |
stephd |
1.5 |
C !INPUT PARAMETERS: =================================================== |
| 31 |
|
|
C myThid :: thread number |
| 32 |
|
|
C myIter :: current timestep |
| 33 |
|
|
C myTime :: current time |
| 34 |
|
|
c PTR_CO2 :: DIC tracer field |
| 35 |
stephd |
1.1 |
INTEGER myIter, myThid |
| 36 |
|
|
_RL myTime |
| 37 |
|
|
_RL PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 38 |
stephd |
1.12 |
_RL PTR_ALK(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 39 |
|
|
_RL PTR_PO4(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
| 40 |
stephd |
1.5 |
INTEGER iMin,iMax,jMin,jMax, bi, bj |
| 41 |
|
|
|
| 42 |
|
|
C !OUTPUT PARAMETERS: =================================================== |
| 43 |
stephd |
1.8 |
c GDC :: tendency due to air-sea exchange |
| 44 |
stephd |
1.1 |
_RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 45 |
|
|
|
| 46 |
|
|
#ifdef ALLOW_PTRACERS |
| 47 |
stephd |
1.5 |
|
| 48 |
|
|
C !LOCAL VARIABLES: ==================================================== |
| 49 |
stephd |
1.2 |
INTEGER I,J, kLev, it |
| 50 |
stephd |
1.1 |
C Number of iterations for pCO2 solvers... |
| 51 |
|
|
C Solubility relation coefficients |
| 52 |
|
|
_RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 53 |
|
|
_RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 54 |
|
|
_RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 55 |
|
|
C local variables for carbon chem |
| 56 |
|
|
_RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 57 |
|
|
_RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 58 |
|
|
_RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 59 |
|
|
_RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
| 60 |
stephd |
1.5 |
CEOP |
| 61 |
stephd |
1.1 |
|
| 62 |
|
|
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
| 63 |
|
|
|
| 64 |
|
|
kLev=1 |
| 65 |
|
|
|
| 66 |
stephd |
1.13 |
c if coupled to atmsopheric model, use the |
| 67 |
|
|
c Co2 value passed from the coupler |
| 68 |
|
|
#ifndef USE_ATMOSCO2 |
| 69 |
stephd |
1.1 |
C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv |
| 70 |
|
|
DO j=1-OLy,sNy+OLy |
| 71 |
|
|
DO i=1-OLx,sNx+OLx |
| 72 |
dfer |
1.15 |
AtmospCO2(i,j,bi,bj)=278.0 _d -6 |
| 73 |
stephd |
1.1 |
ENDDO |
| 74 |
|
|
ENDDO |
| 75 |
stephd |
1.13 |
#endif |
| 76 |
stephd |
1.1 |
|
| 77 |
|
|
|
| 78 |
|
|
C ================================================================= |
| 79 |
|
|
C determine inorganic carbon chem coefficients |
| 80 |
stephd |
1.10 |
DO j=jmin,jmax |
| 81 |
|
|
DO i=imin,imax |
| 82 |
stephd |
1.1 |
|
| 83 |
|
|
#ifdef DIC_BIOTIC |
| 84 |
|
|
cQQQQ check ptracer numbers |
| 85 |
stephd |
1.12 |
surfalk(i,j) = PTR_ALK(i,j,klev) |
| 86 |
stephd |
1.1 |
& * maskC(i,j,kLev,bi,bj) |
| 87 |
stephd |
1.12 |
surfphos(i,j) = PTR_PO4(i,j,klev) |
| 88 |
stephd |
1.1 |
& * maskC(i,j,kLev,bi,bj) |
| 89 |
|
|
#else |
| 90 |
dfer |
1.15 |
surfalk(i,j) = 2.366595 _d 0 * salt(i,j,kLev,bi,bj)/gsm_s |
| 91 |
stephd |
1.1 |
& * maskC(i,j,kLev,bi,bj) |
| 92 |
dfer |
1.15 |
surfphos(i,j) = 5.1225 _d -4 * maskC(i,j,kLev,bi,bj) |
| 93 |
stephd |
1.1 |
#endif |
| 94 |
|
|
C FOR NON-INTERACTIVE Si |
| 95 |
stephd |
1.3 |
surfsi(i,j) = SILICA(i,j,bi,bj) * maskC(i,j,kLev,bi,bj) |
| 96 |
stephd |
1.1 |
ENDDO |
| 97 |
|
|
ENDDO |
| 98 |
|
|
|
| 99 |
|
|
CALL CARBON_COEFFS( |
| 100 |
|
|
I theta,salt, |
| 101 |
|
|
I bi,bj,iMin,iMax,jMin,jMax) |
| 102 |
|
|
C==================================================================== |
| 103 |
|
|
|
| 104 |
|
|
c pCO2 solver... |
| 105 |
stephd |
1.3 |
C$TAF LOOP = parallel |
| 106 |
stephd |
1.10 |
DO j=jmin,jmax |
| 107 |
stephd |
1.3 |
C$TAF LOOP = parallel |
| 108 |
stephd |
1.10 |
DO i=imin,imax |
| 109 |
stephd |
1.1 |
|
| 110 |
|
|
IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN |
| 111 |
|
|
CALL CALC_PCO2_APPROX( |
| 112 |
|
|
I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), |
| 113 |
|
|
I PTR_CO2(i,j,kLev), surfphos(i,j), |
| 114 |
|
|
I surfsi(i,j),surfalk(i,j), |
| 115 |
|
|
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
| 116 |
|
|
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
| 117 |
|
|
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
| 118 |
|
|
I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), |
| 119 |
|
|
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
| 120 |
|
|
U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) |
| 121 |
|
|
ELSE |
| 122 |
|
|
pCO2(i,j,bi,bj)=0. _d 0 |
| 123 |
|
|
END IF |
| 124 |
|
|
ENDDO |
| 125 |
|
|
ENDDO |
| 126 |
|
|
|
| 127 |
stephd |
1.10 |
DO j=jmin,jmax |
| 128 |
|
|
DO i=imin,imax |
| 129 |
stephd |
1.1 |
|
| 130 |
|
|
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
| 131 |
|
|
C calculate SCHMIDT NO. for CO2 |
| 132 |
|
|
SchmidtNoDIC(i,j) = |
| 133 |
|
|
& sca1 |
| 134 |
|
|
& + sca2 * theta(i,j,kLev,bi,bj) |
| 135 |
|
|
& + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
| 136 |
|
|
& + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
| 137 |
|
|
& *theta(i,j,kLev,bi,bj) |
| 138 |
|
|
|
| 139 |
stephd |
1.13 |
c |
| 140 |
|
|
#ifdef USE_PLOAD |
| 141 |
dfer |
1.14 |
C Convert anomalous pressure pLoad (in Pa) from atmospheric model |
| 142 |
|
|
C to total pressure (in Atm) |
| 143 |
|
|
C Note: it is assumed the reference atmospheric pressure is 1Atm=1013mb |
| 144 |
|
|
C rather than the actual ref. pressure from Atm. model so that on |
| 145 |
|
|
C average AtmosP is about 1 Atm. |
| 146 |
dfer |
1.15 |
AtmosP(i,j,bi,bj)= 1. _d 0 + pLoad(i,j,bi,bj)/Pa2Atm |
| 147 |
stephd |
1.13 |
#endif |
| 148 |
|
|
|
| 149 |
stephd |
1.1 |
C Determine surface flux (FDIC) |
| 150 |
|
|
C first correct pCO2at for surface atmos pressure |
| 151 |
|
|
pCO2sat(i,j) = |
| 152 |
|
|
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
| 153 |
|
|
c find exchange coefficient |
| 154 |
|
|
c account for schmidt number and and varible piston velocity |
| 155 |
dfer |
1.15 |
pisvel(i,j,bi,bj)=0.337 _d 0 *wind(i,j,bi,bj)**2/3.6 _d 5 |
| 156 |
stephd |
1.1 |
Kwexch(i,j) = |
| 157 |
|
|
& pisvel(i,j,bi,bj) |
| 158 |
dfer |
1.15 |
& / sqrt(SchmidtNoDIC(i,j)/660.0 _d 0) |
| 159 |
stephd |
1.1 |
c OR use a constant coeff |
| 160 |
|
|
c Kwexch(i,j) = 5e-5 |
| 161 |
|
|
c ice influence |
| 162 |
dfer |
1.15 |
Kwexch(i,j) =(1. _d 0 - FIce(i,j,bi,bj))*Kwexch(i,j) |
| 163 |
stephd |
1.1 |
|
| 164 |
|
|
|
| 165 |
|
|
C Calculate flux in terms of DIC units using K0, solubility |
| 166 |
|
|
C Flux = Vp * ([CO2sat] - [CO2]) |
| 167 |
|
|
C CO2sat = K0*pCO2atmos*P/P0 |
| 168 |
|
|
C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 |
| 169 |
stephd |
1.2 |
FluxCO2(i,j,bi,bj) = |
| 170 |
stephd |
1.1 |
& maskC(i,j,kLev,bi,bj)*Kwexch(i,j)*( |
| 171 |
|
|
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
| 172 |
|
|
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
| 173 |
|
|
& ) |
| 174 |
|
|
ELSE |
| 175 |
dfer |
1.15 |
FluxCO2(i,j,bi,bj) = 0. _d 0 |
| 176 |
stephd |
1.1 |
ENDIF |
| 177 |
|
|
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
| 178 |
stephd |
1.2 |
FluxCO2(i,j,bi,bj) = FluxCO2(i,j,bi,bj)/permil |
| 179 |
stephd |
1.1 |
|
| 180 |
|
|
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
| 181 |
|
|
c calculate virtual flux |
| 182 |
|
|
c EminusPforV = dS/dt*(1/Sglob) |
| 183 |
|
|
C NOTE: Be very careful with signs here! |
| 184 |
|
|
C Positive EminusPforV => loss of water to atmos and increase |
| 185 |
|
|
C in salinity. Thus, also increase in other surface tracers |
| 186 |
|
|
C (i.e. positive virtual flux into surface layer) |
| 187 |
|
|
C ...so here, VirtualFLux = dC/dt! |
| 188 |
jmc |
1.7 |
VirtualFlux(i,j)=gsm_DIC*surfaceForcingS(i,j,bi,bj)/gsm_s |
| 189 |
stephd |
1.1 |
c OR |
| 190 |
|
|
c let virtual flux be zero |
| 191 |
|
|
c VirtualFlux(i,j)=0.d0 |
| 192 |
|
|
c |
| 193 |
|
|
ELSE |
| 194 |
|
|
VirtualFlux(i,j)=0. _d 0 |
| 195 |
|
|
ENDIF |
| 196 |
|
|
ENDDO |
| 197 |
|
|
ENDDO |
| 198 |
|
|
|
| 199 |
|
|
C update tendency |
| 200 |
stephd |
1.10 |
DO j=jmin,jmax |
| 201 |
|
|
DO i=imin,imax |
| 202 |
stephd |
1.9 |
GDC(i,j)= maskC(i,j,kLev,bi,bj)*recip_drF(kLev)* |
| 203 |
|
|
& recip_hFacC(i,j,kLev,bi,bj)*( |
| 204 |
stephd |
1.8 |
& FluxCO2(i,j,bi,bj) + VirtualFlux(i,j) |
| 205 |
stephd |
1.1 |
& ) |
| 206 |
|
|
ENDDO |
| 207 |
|
|
ENDDO |
| 208 |
|
|
|
| 209 |
|
|
#endif |
| 210 |
|
|
RETURN |
| 211 |
|
|
END |