1 |
stephd |
1.1 |
#include "CPP_OPTIONS.h" |
2 |
|
|
#include "PTRACERS_OPTIONS.h" |
3 |
|
|
#include "GCHEM_OPTIONS.h" |
4 |
|
|
|
5 |
|
|
CStartOfInterFace |
6 |
|
|
SUBROUTINE DIC_SURFFORCING( PTR_CO2 , GDC, |
7 |
|
|
I bi,bj,imin,imax,jmin,jmax, |
8 |
|
|
I myIter,myTime,myThid) |
9 |
|
|
|
10 |
|
|
C /==========================================================\ |
11 |
|
|
C | SUBROUTINE DIC_SURFFORCING | |
12 |
|
|
C | o Calculate the carbon air-sea flux terms | |
13 |
|
|
C | o following external_forcing_dic.F from Mick | |
14 |
|
|
C |==========================================================| |
15 |
|
|
IMPLICIT NONE |
16 |
|
|
|
17 |
|
|
C == GLobal variables == |
18 |
|
|
#include "SIZE.h" |
19 |
|
|
#include "DYNVARS.h" |
20 |
|
|
#include "EEPARAMS.h" |
21 |
|
|
#include "PARAMS.h" |
22 |
|
|
#include "GRID.h" |
23 |
|
|
#include "FFIELDS.h" |
24 |
|
|
#include "DIC_ABIOTIC.h" |
25 |
|
|
#ifdef DIC_BIOTIC |
26 |
|
|
#include "PTRACERS.h" |
27 |
|
|
#endif |
28 |
|
|
|
29 |
|
|
C == Routine arguments == |
30 |
|
|
INTEGER myIter, myThid |
31 |
|
|
_RL myTime |
32 |
|
|
_RL PTR_CO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr) |
33 |
|
|
_RL GDC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
34 |
|
|
INTEGER iMin,iMax,jMin,jMax, bi, bj |
35 |
|
|
|
36 |
|
|
#ifdef ALLOW_PTRACERS |
37 |
|
|
#ifdef DIC_ABIOTIC |
38 |
|
|
C == Local variables == |
39 |
|
|
INTEGER I,J, kLev |
40 |
|
|
C Number of iterations for pCO2 solvers... |
41 |
|
|
INTEGER inewtonmax |
42 |
|
|
INTEGER ibrackmax |
43 |
|
|
INTEGER donewt |
44 |
|
|
C Solubility relation coefficients |
45 |
|
|
_RL SchmidtNoDIC(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
46 |
|
|
_RL pCO2sat(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
47 |
|
|
_RL Kwexch(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
48 |
|
|
C local variables for carbon chem |
49 |
|
|
_RL surfalk(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
50 |
|
|
_RL surfphos(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
51 |
|
|
_RL surfsi(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
52 |
|
|
_RL VirtualFlux(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
53 |
|
|
_RL FluxCO2(1-OLx:sNx+OLx,1-OLy:sNy+OLy) |
54 |
|
|
|
55 |
|
|
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
56 |
|
|
|
57 |
|
|
kLev=1 |
58 |
|
|
|
59 |
|
|
C PRE-INDUSTRIAL STEADY STATE pCO2 = 278.0 ppmv |
60 |
|
|
DO j=1-OLy,sNy+OLy |
61 |
|
|
DO i=1-OLx,sNx+OLx |
62 |
|
|
AtmospCO2(i,j,bi,bj)=278.0d-6 |
63 |
|
|
ENDDO |
64 |
|
|
ENDDO |
65 |
|
|
|
66 |
|
|
|
67 |
|
|
C ================================================================= |
68 |
|
|
C determine inorganic carbon chem coefficients |
69 |
|
|
DO j=1-OLy,sNy+OLy |
70 |
|
|
DO i=1-OLx,sNx+OLx |
71 |
|
|
|
72 |
|
|
#ifdef DIC_BIOTIC |
73 |
|
|
cQQQQ check ptracer numbers |
74 |
|
|
surfalk(i,j) = PTRACER(i,j,klev,bi,bj,2) |
75 |
|
|
& * maskC(i,j,kLev,bi,bj) |
76 |
|
|
surfphos(i,j) = PTRACER(i,j,klev,bi,bj,3) |
77 |
|
|
& * maskC(i,j,kLev,bi,bj) |
78 |
|
|
#else |
79 |
|
|
surfalk(i,j) = 2.366595 * salt(i,j,kLev,bi,bj)/gsm_s |
80 |
|
|
& * maskC(i,j,kLev,bi,bj) |
81 |
|
|
surfphos(i,j) = 5.1225e-4 * maskC(i,j,kLev,bi,bj) |
82 |
|
|
#endif |
83 |
|
|
C FOR NON-INTERACTIVE Si |
84 |
|
|
surfsi(i,j) = 7.6838e-3 * maskC(i,j,kLev,bi,bj) |
85 |
|
|
ENDDO |
86 |
|
|
ENDDO |
87 |
|
|
|
88 |
|
|
CALL CARBON_COEFFS( |
89 |
|
|
I theta,salt, |
90 |
|
|
I bi,bj,iMin,iMax,jMin,jMax) |
91 |
|
|
C==================================================================== |
92 |
|
|
|
93 |
|
|
#define PH_APPROX |
94 |
|
|
c set number of iterations for [H+] solvers |
95 |
|
|
#ifdef PH_APPROX |
96 |
|
|
inewtonmax = 1 |
97 |
|
|
#else |
98 |
|
|
inewtonmax = 10 |
99 |
|
|
#endif |
100 |
|
|
ibrackmax = 30 |
101 |
|
|
C determine pCO2 in surface ocean |
102 |
|
|
C set guess of pH for first step here |
103 |
|
|
C IF first step THEN use bracket-bisection for first step, |
104 |
|
|
C and determine carbon coefficients for safety |
105 |
|
|
C ELSE use newton-raphson with previous H+(x,y) as first guess |
106 |
|
|
|
107 |
|
|
donewt=1 |
108 |
|
|
|
109 |
|
|
c for first few timesteps |
110 |
|
|
IF(myIter .le. (nIter0+inewtonmax) )then |
111 |
|
|
donewt=0 |
112 |
|
|
DO j=1-OLy,sNy+OLy |
113 |
|
|
DO i=1-OLx,sNx+OLx |
114 |
|
|
pH(i,j,bi,bj) = 8.0 |
115 |
|
|
ENDDO |
116 |
|
|
ENDDO |
117 |
|
|
#ifdef PH_APPROX |
118 |
|
|
print*,'QQ: pCO2 approximation method' |
119 |
|
|
c first approxmation |
120 |
|
|
DO j=1-OLy,sNy+OLy |
121 |
|
|
DO i=1-OLx,sNx+OLx |
122 |
|
|
CALL CALC_PCO2_APPROX( |
123 |
|
|
I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), |
124 |
|
|
I PTR_CO2(i,j,kLev), surfphos(i,j), |
125 |
|
|
I surfsi(i,j),surfalk(i,j), |
126 |
|
|
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
127 |
|
|
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
128 |
|
|
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
129 |
|
|
I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), |
130 |
|
|
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
131 |
|
|
U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) |
132 |
|
|
ENDDO |
133 |
|
|
ENDDO |
134 |
|
|
#else |
135 |
|
|
print*,'QQ: pCO2 full method' |
136 |
|
|
#endif |
137 |
|
|
ENDIF |
138 |
|
|
|
139 |
|
|
|
140 |
|
|
c pCO2 solver... |
141 |
|
|
DO j=1-OLy,sNy+OLy |
142 |
|
|
DO i=1-OLx,sNx+OLx |
143 |
|
|
|
144 |
|
|
IF(maskC(i,j,kLev,bi,bj) .NE. 0.)THEN |
145 |
|
|
#ifdef PH_APPROX |
146 |
|
|
CALL CALC_PCO2_APPROX( |
147 |
|
|
I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), |
148 |
|
|
I PTR_CO2(i,j,kLev), surfphos(i,j), |
149 |
|
|
I surfsi(i,j),surfalk(i,j), |
150 |
|
|
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
151 |
|
|
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
152 |
|
|
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
153 |
|
|
I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), |
154 |
|
|
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
155 |
|
|
U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) |
156 |
|
|
#else |
157 |
|
|
CALL CALC_PCO2(donewt,inewtonmax,ibrackmax, |
158 |
|
|
I theta(i,j,kLev,bi,bj),salt(i,j,kLev,bi,bj), |
159 |
|
|
I PTR_CO2(i,j,kLev), surfphos(i,j), |
160 |
|
|
I surfsi(i,j),surfalk(i,j), |
161 |
|
|
I ak1(i,j,bi,bj),ak2(i,j,bi,bj), |
162 |
|
|
I ak1p(i,j,bi,bj),ak2p(i,j,bi,bj),ak3p(i,j,bi,bj), |
163 |
|
|
I aks(i,j,bi,bj),akb(i,j,bi,bj),akw(i,j,bi,bj), |
164 |
|
|
I aksi(i,j,bi,bj),akf(i,j,bi,bj),ff(i,j,bi,bj), |
165 |
|
|
I bt(i,j,bi,bj),st(i,j,bi,bj),ft(i,j,bi,bj), |
166 |
|
|
U pH(i,j,bi,bj),pCO2(i,j,bi,bj) ) |
167 |
|
|
#endif |
168 |
|
|
ELSE |
169 |
|
|
pCO2(i,j,bi,bj)=0. _d 0 |
170 |
|
|
END IF |
171 |
|
|
ENDDO |
172 |
|
|
ENDDO |
173 |
|
|
|
174 |
|
|
DO j=1-OLy,sNy+OLy |
175 |
|
|
DO i=1-OLx,sNx+OLx |
176 |
|
|
|
177 |
|
|
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
178 |
|
|
C calculate SCHMIDT NO. for CO2 |
179 |
|
|
SchmidtNoDIC(i,j) = |
180 |
|
|
& sca1 |
181 |
|
|
& + sca2 * theta(i,j,kLev,bi,bj) |
182 |
|
|
& + sca3 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
183 |
|
|
& + sca4 * theta(i,j,kLev,bi,bj)*theta(i,j,kLev,bi,bj) |
184 |
|
|
& *theta(i,j,kLev,bi,bj) |
185 |
|
|
|
186 |
|
|
C Determine surface flux (FDIC) |
187 |
|
|
C first correct pCO2at for surface atmos pressure |
188 |
|
|
pCO2sat(i,j) = |
189 |
|
|
& AtmosP(i,j,bi,bj)*AtmospCO2(i,j,bi,bj) |
190 |
|
|
c find exchange coefficient |
191 |
|
|
c account for schmidt number and and varible piston velocity |
192 |
|
|
Kwexch(i,j) = |
193 |
|
|
& pisvel(i,j,bi,bj) |
194 |
|
|
& / sqrt(SchmidtNoDIC(i,j)/660.0) |
195 |
|
|
c OR use a constant coeff |
196 |
|
|
c Kwexch(i,j) = 5e-5 |
197 |
|
|
c ice influence |
198 |
|
|
cQQ Kwexch(i,j) =(1.d0-Fice(i,j,bi,bj))*Kwexch(i,j) |
199 |
|
|
|
200 |
|
|
|
201 |
|
|
C Calculate flux in terms of DIC units using K0, solubility |
202 |
|
|
C Flux = Vp * ([CO2sat] - [CO2]) |
203 |
|
|
C CO2sat = K0*pCO2atmos*P/P0 |
204 |
|
|
C Converting pCO2 to [CO2] using ff, as in CALC_PCO2 |
205 |
|
|
FluxCO2(i,j) = |
206 |
|
|
& maskC(i,j,kLev,bi,bj)*Kwexch(i,j)*( |
207 |
|
|
& ak0(i,j,bi,bj)*pCO2sat(i,j) - |
208 |
|
|
& ff(i,j,bi,bj)*pCO2(i,j,bi,bj) |
209 |
|
|
& ) |
210 |
|
|
ELSE |
211 |
|
|
FluxCO2(i,j) = 0. |
212 |
|
|
ENDIF |
213 |
|
|
C convert flux (mol kg-1 m s-1) to (mol m-2 s-1) |
214 |
|
|
FluxCO2(i,j) = FluxCO2(i,j)/permil |
215 |
|
|
|
216 |
|
|
IF (maskC(i,j,kLev,bi,bj).NE.0.) THEN |
217 |
|
|
c calculate virtual flux |
218 |
|
|
c EminusPforV = dS/dt*(1/Sglob) |
219 |
|
|
C NOTE: Be very careful with signs here! |
220 |
|
|
C Positive EminusPforV => loss of water to atmos and increase |
221 |
|
|
C in salinity. Thus, also increase in other surface tracers |
222 |
|
|
C (i.e. positive virtual flux into surface layer) |
223 |
|
|
C ...so here, VirtualFLux = dC/dt! |
224 |
|
|
VirtualFlux(i,j)=gsm_DIC*surfaceTendencyS(i,j,bi,bj)/gsm_s |
225 |
|
|
c OR |
226 |
|
|
c let virtual flux be zero |
227 |
|
|
c VirtualFlux(i,j)=0.d0 |
228 |
|
|
c |
229 |
|
|
ELSE |
230 |
|
|
VirtualFlux(i,j)=0. _d 0 |
231 |
|
|
ENDIF |
232 |
|
|
ENDDO |
233 |
|
|
ENDDO |
234 |
|
|
|
235 |
|
|
C update tendency |
236 |
|
|
DO j=1-OLy,sNy+OLy |
237 |
|
|
DO i=1-OLx,sNx+OLx |
238 |
|
|
GDC(i,j)= maskC(i,j,kLev,bi,bj)*( |
239 |
|
|
& FluxCO2(i,j)*recip_drF(kLev) |
240 |
|
|
& + VirtualFlux(i,j) |
241 |
|
|
& ) |
242 |
|
|
ENDDO |
243 |
|
|
ENDDO |
244 |
|
|
|
245 |
|
|
#endif |
246 |
|
|
#endif |
247 |
|
|
RETURN |
248 |
|
|
END |