1 |
|
C $Header$ |
2 |
|
C $Name$ |
3 |
|
|
4 |
#include "CTRL_CPPOPTIONS.h" |
#include "CTRL_OPTIONS.h" |
5 |
#ifdef ALLOW_OBCS |
#ifdef ALLOW_OBCS |
6 |
# include "OBCS_OPTIONS.h" |
# include "OBCS_OPTIONS.h" |
7 |
#endif |
#endif |
8 |
|
|
|
|
|
9 |
subroutine ctrl_getobcsw( |
subroutine ctrl_getobcsw( |
10 |
I mytime, |
I mytime, |
11 |
I myiter, |
I myiter, |
28 |
|
|
29 |
implicit none |
implicit none |
30 |
|
|
|
#ifdef ALLOW_OBCSW_CONTROL |
|
|
|
|
31 |
c == global variables == |
c == global variables == |
32 |
|
#ifdef ALLOW_OBCSW_CONTROL |
33 |
#include "EEPARAMS.h" |
#include "EEPARAMS.h" |
34 |
#include "SIZE.h" |
#include "SIZE.h" |
35 |
#include "PARAMS.h" |
#include "PARAMS.h" |
36 |
#include "GRID.h" |
#include "GRID.h" |
37 |
#include "OBCS.h" |
c#include "OBCS_PARAMS.h" |
38 |
|
#include "OBCS_GRID.h" |
39 |
|
#include "OBCS_FIELDS.h" |
40 |
|
#include "CTRL_SIZE.h" |
41 |
#include "ctrl.h" |
#include "ctrl.h" |
42 |
#include "ctrl_dummy.h" |
#include "ctrl_dummy.h" |
43 |
|
#include "CTRL_OBCS.h" |
44 |
#include "optim.h" |
#include "optim.h" |
45 |
|
#endif /* ALLOW_OBCSW_CONTROL */ |
46 |
|
|
47 |
c == routine arguments == |
c == routine arguments == |
|
|
|
48 |
_RL mytime |
_RL mytime |
49 |
integer myiter |
integer myiter |
50 |
integer mythid |
integer mythid |
51 |
|
|
52 |
|
#ifdef ALLOW_OBCSW_CONTROL |
53 |
c == local variables == |
c == local variables == |
54 |
|
|
55 |
integer bi,bj |
integer bi,bj |
70 |
integer obcswcount1 |
integer obcswcount1 |
71 |
|
|
72 |
cgg _RL maskyz (1-oly:sny+oly,nr,nsx,nsy) |
cgg _RL maskyz (1-oly:sny+oly,nr,nsx,nsy) |
73 |
|
_RL tmpfldyz (1-oly:sny+oly,nr,nsx,nsy) |
74 |
|
|
75 |
logical doglobalread |
logical doglobalread |
76 |
logical ladinit |
logical ladinit |
77 |
|
|
78 |
character*(80) fnameobcsw |
character*(80) fnameobcsw |
79 |
|
|
80 |
cgg( Variables for splitting barotropic/baroclinic vels. |
#ifdef ALLOW_OBCS_CONTROL_MODES |
81 |
_RL ubaro |
integer nk,nz |
82 |
_RL utop |
_RL tmpz (nr,nsx,nsy) |
83 |
cgg) |
_RL stmp |
84 |
|
#endif |
85 |
|
|
86 |
c == external functions == |
c == external functions == |
87 |
|
|
101 |
imax = snx+olx |
imax = snx+olx |
102 |
ip1 = 1 |
ip1 = 1 |
103 |
|
|
|
cgg( Initialize variables for balancing volume flux. |
|
|
ubaro = 0.d0 |
|
|
utop = 0.d0 |
|
|
cgg) |
|
|
|
|
104 |
c-- Now, read the control vector. |
c-- Now, read the control vector. |
105 |
doglobalread = .false. |
doglobalread = .false. |
106 |
ladinit = .false. |
ladinit = .false. |
107 |
|
|
108 |
if (optimcycle .ge. 0) then |
if (optimcycle .ge. 0) then |
109 |
ilobcsw=ilnblnk( xx_obcsw_file ) |
ilobcsw=ilnblnk( xx_obcsw_file ) |
110 |
write(fnameobcsw(1:80),'(2a,i10.10)') |
write(fnameobcsw(1:80),'(2a,i10.10)') |
111 |
& xx_obcsw_file(1:ilobcsw), '.', optimcycle |
& xx_obcsw_file(1:ilobcsw), '.', optimcycle |
112 |
endif |
endif |
113 |
|
|
114 |
c-- Get the counters, flags, and the interpolation factor. |
c-- Get the counters, flags, and the interpolation factor. |
119 |
I mytime, myiter, mythid ) |
I mytime, myiter, mythid ) |
120 |
|
|
121 |
do iobcs = 1,nobcs |
do iobcs = 1,nobcs |
122 |
if ( obcswfirst ) then |
if ( obcswfirst ) then |
123 |
call active_read_yz_loc( fnameobcsw, tmpfldyz, |
call active_read_yz( fnameobcsw, tmpfldyz, |
124 |
& (obcswcount0-1)*nobcs+iobcs, |
& (obcswcount0-1)*nobcs+iobcs, |
125 |
& doglobalread, ladinit, optimcycle, |
& doglobalread, ladinit, optimcycle, |
126 |
& mythid, xx_obcsw_dummy ) |
& mythid, xx_obcsw_dummy ) |
127 |
|
|
128 |
if ( optimcycle .gt. 0) then |
do bj = jtlo,jthi |
129 |
if (iobcs .eq. 3) then |
do bi = itlo,ithi |
130 |
cgg Special attention is needed for the normal velocity. |
#ifdef ALLOW_OBCS_CONTROL_MODES |
131 |
cgg For the north, this is the v velocity, iobcs = 4. |
if (iobcs .gt. 2) then |
132 |
cgg This is done on a columnwise basis here. |
do j = jmin,jmax |
133 |
do bj = jtlo,jthi |
i = OB_Iw(j,bi,bj) |
134 |
do bi = itlo, ithi |
IF ( i.EQ.OB_indexNone ) i = 1 |
135 |
do j = jmin,jmax |
cih Determine number of open vertical layers. |
136 |
i = OB_Iw(J,bi,bj) |
nz = 0 |
137 |
|
do k = 1,Nr |
138 |
cgg The barotropic velocity is stored in the level 1. |
if (iobcs .eq. 3) then |
139 |
ubaro = tmpfldyz(j,1,bi,bj) |
nz = nz + maskW(i+ip1,j,k,bi,bj) |
140 |
tmpfldyz(j,1,bi,bj) = 0.d0 |
else |
141 |
utop = 0.d0 |
nz = nz + maskS(i,j,k,bi,bj) |
142 |
|
endif |
143 |
do k = 1,Nr |
end do |
144 |
cgg If cells are not full, this should be modified with hFac. |
cih Compute absolute velocities from the barotropic-baroclinic modes. |
145 |
cgg |
do k = 1,Nr |
146 |
cgg The xx field (tmpfldxz) does not contain the velocity at the |
if (k.le.nz) then |
147 |
cgg surface level. This velocity is not independent; it must |
stmp = 0. |
148 |
cgg exactly balance the volume flux, since we are dealing with |
do nk = 1,nz |
149 |
cgg the baroclinic velocity structure.. |
stmp = stmp + |
150 |
utop = tmpfldyz(j,k,bi,bj)* |
& modesv(k,nk,nz)*tmpfldyz(j,nk,bi,bj) |
151 |
& maskW(i+ip1,j,k,bi,bj) * delR(k) + utop |
end do |
152 |
cgg Add the barotropic velocity component. |
tmpz(k,bi,bj) = stmp |
153 |
if (maskW(i+ip1,j,k,bi,bj) .ne. 0.) then |
else |
154 |
tmpfldyz(j,k,bi,bj) = tmpfldyz(j,k,bi,bj)+ ubaro |
tmpz(k,bi,bj) = 0. |
155 |
endif |
end if |
|
enddo |
|
|
cgg Compute the baroclinic velocity at level 1. Should balance flux. |
|
|
tmpfldyz(j,1,bi,bj) = tmpfldyz(j,1,bi,bj) |
|
|
& - utop / delR(1) |
|
|
enddo |
|
|
enddo |
|
|
enddo |
|
|
endif |
|
|
if (iobcs .eq. 4) then |
|
|
cgg Special attention is needed for the normal velocity. |
|
|
cgg For the north, this is the v velocity, iobcs = 4. |
|
|
cgg This is done on a columnwise basis here. |
|
|
do bj = jtlo,jthi |
|
|
do bi = itlo, ithi |
|
|
do j = jmin,jmax |
|
|
i = OB_Iw(J,bi,bj) |
|
|
|
|
|
cgg The barotropic velocity is stored in the level 1. |
|
|
ubaro = tmpfldyz(j,1,bi,bj) |
|
|
tmpfldyz(j,1,bi,bj) = 0.d0 |
|
|
utop = 0.d0 |
|
|
|
|
|
do k = 1,Nr |
|
|
cgg If cells are not full, this should be modified with hFac. |
|
|
cgg |
|
|
cgg The xx field (tmpfldxz) does not contain the velocity at the |
|
|
cgg surface level. This velocity is not independent; it must |
|
|
cgg exactly balance the volume flux, since we are dealing with |
|
|
cgg the baroclinic velocity structure.. |
|
|
utop = tmpfldyz(j,k,bi,bj)* |
|
|
& maskS(i,j,k,bi,bj) * delR(k) + utop |
|
|
cgg Add the barotropic velocity component. |
|
|
if (maskS(i,j,k,bi,bj) .ne. 0.) then |
|
|
tmpfldyz(j,k,bi,bj) = tmpfldyz(j,k,bi,bj)+ ubaro |
|
|
endif |
|
|
enddo |
|
|
cgg Compute the baroclinic velocity at level 1. Should balance flux. |
|
|
tmpfldyz(j,1,bi,bj) = tmpfldyz(j,1,bi,bj) |
|
|
& - utop / delR(1) |
|
|
enddo |
|
|
enddo |
|
|
enddo |
|
|
endif |
|
|
endif |
|
|
|
|
|
do bj = jtlo,jthi |
|
|
do bi = itlo,ithi |
|
|
do k = 1,nr |
|
|
do j = jmin,jmax |
|
|
xx_obcsw1(j,k,bi,bj,iobcs) = tmpfldyz (j,k,bi,bj) |
|
|
cgg & * maskyz (j,k,bi,bj) |
|
|
enddo |
|
|
enddo |
|
|
enddo |
|
|
enddo |
|
|
endif |
|
|
|
|
|
if ( (obcswfirst) .or. (obcswchanged)) then |
|
|
|
|
|
cgg( This is a terribly long way to do it. However, the dimensions do not exactly |
|
|
cgg match up. I will blame Fortran for the ugliness. |
|
|
|
|
|
do bj = jtlo,jthi |
|
|
do bi = itlo,ithi |
|
|
do k = 1,nr |
|
|
do j = jmin,jmax |
|
|
tmpfldyz(j,k,bi,bj) = xx_obcsw1(j,k,bi,bj,iobcs) |
|
|
enddo |
|
|
enddo |
|
156 |
enddo |
enddo |
157 |
|
do k = 1,Nr |
158 |
|
if (iobcs .eq. 3) then |
159 |
|
tmpfldyz(j,k,bi,bj) = tmpz(k,bi,bj) |
160 |
|
& *recip_hFacW(i+ip1,j,k,bi,bj) |
161 |
|
else |
162 |
|
tmpfldyz(j,k,bi,bj) = tmpz(k,bi,bj) |
163 |
|
& *recip_hFacS(i,j,k,bi,bj) |
164 |
|
endif |
165 |
|
end do |
166 |
|
enddo |
167 |
|
endif |
168 |
|
#endif |
169 |
|
do k = 1,nr |
170 |
|
do j = jmin,jmax |
171 |
|
xx_obcsw1(j,k,bi,bj,iobcs) = tmpfldyz (j,k,bi,bj) |
172 |
|
cgg & * maskyz (j,k,bi,bj) |
173 |
|
enddo |
174 |
enddo |
enddo |
175 |
|
enddo |
176 |
|
enddo |
177 |
|
endif |
178 |
|
|
179 |
call exf_swapffields_yz( tmpfldyz2, tmpfldyz, mythid) |
if ( (obcswfirst) .or. (obcswchanged)) then |
180 |
|
|
181 |
do bj = jtlo,jthi |
do bj = jtlo,jthi |
182 |
do bi = itlo,ithi |
do bi = itlo,ithi |
183 |
do k = 1,nr |
do k = 1,nr |
184 |
do j = jmin,jmax |
do j = jmin,jmax |
185 |
xx_obcsw0(j,k,bi,bj,iobcs) = tmpfldyz2(j,k,bi,bj) |
xx_obcsw0(j,k,bi,bj,iobcs) = xx_obcsw1(j,k,bi,bj,iobcs) |
186 |
enddo |
tmpfldyz (j,k,bi,bj) = 0. _d 0 |
187 |
enddo |
enddo |
|
enddo |
|
188 |
enddo |
enddo |
189 |
|
enddo |
190 |
|
enddo |
191 |
|
|
192 |
call active_read_yz_loc( fnameobcsw, tmpfldyz, |
call active_read_yz( fnameobcsw, tmpfldyz, |
193 |
& (obcswcount1-1)*nobcs+iobcs, |
& (obcswcount1-1)*nobcs+iobcs, |
194 |
& doglobalread, ladinit, optimcycle, |
& doglobalread, ladinit, optimcycle, |
195 |
& mythid, xx_obcsw_dummy ) |
& mythid, xx_obcsw_dummy ) |
196 |
|
|
197 |
if ( optimcycle .gt. 0) then |
do bj = jtlo,jthi |
198 |
if (iobcs .eq. 3) then |
do bi = itlo,ithi |
199 |
cgg Special attention is needed for the normal velocity. |
#ifdef ALLOW_OBCS_CONTROL_MODES |
200 |
cgg For the north, this is the v velocity, iobcs = 4. |
if (iobcs .gt. 2) then |
201 |
cgg This is done on a columnwise basis here. |
do j = jmin,jmax |
202 |
do bj = jtlo,jthi |
i = OB_Iw(j,bi,bj) |
203 |
do bi = itlo, ithi |
IF ( i.EQ.OB_indexNone ) i = 1 |
204 |
do j = jmin,jmax |
cih Determine number of open vertical layers. |
205 |
i = OB_Iw(J,bi,bj) |
nz = 0 |
206 |
|
do k = 1,Nr |
207 |
cgg The barotropic velocity is stored in the level 1. |
if (iobcs .eq. 3) then |
208 |
ubaro = tmpfldyz(j,1,bi,bj) |
nz = nz + maskW(i+ip1,j,k,bi,bj) |
209 |
tmpfldyz(j,1,bi,bj) = 0.d0 |
else |
210 |
utop = 0.d0 |
nz = nz + maskS(i,j,k,bi,bj) |
211 |
|
endif |
212 |
do k = 1,Nr |
end do |
213 |
cgg If cells are not full, this should be modified with hFac. |
cih Compute absolute velocities from the barotropic-baroclinic modes. |
214 |
cgg |
do k = 1,Nr |
215 |
cgg The xx field (tmpfldxz) does not contain the velocity at the |
if (k.le.nz) then |
216 |
cgg surface level. This velocity is not independent; it must |
stmp = 0. |
217 |
cgg exactly balance the volume flux, since we are dealing with |
do nk = 1,nz |
218 |
cgg the baroclinic velocity structure.. |
stmp = stmp + |
219 |
utop = tmpfldyz(j,k,bi,bj)* |
& modesv(k,nk,nz)*tmpfldyz(j,nk,bi,bj) |
220 |
& maskW(i+ip1,j,k,bi,bj) * delR(k) + utop |
end do |
221 |
cgg Add the barotropic velocity component. |
tmpz(k,bi,bj) = stmp |
222 |
if (maskW(i+ip1,j,k,bi,bj) .ne. 0.) then |
else |
223 |
tmpfldyz(j,k,bi,bj) = tmpfldyz(j,k,bi,bj)+ ubaro |
tmpz(k,bi,bj) = 0. |
224 |
endif |
end if |
|
enddo |
|
|
cgg Compute the baroclinic velocity at level 1. Should balance flux. |
|
|
tmpfldyz(j,1,bi,bj) = tmpfldyz(j,1,bi,bj) |
|
|
& - utop / delR(1) |
|
|
enddo |
|
|
enddo |
|
|
enddo |
|
|
endif |
|
|
if (iobcs .eq. 4) then |
|
|
cgg Special attention is needed for the normal velocity. |
|
|
cgg For the north, this is the v velocity, iobcs = 4. |
|
|
cgg This is done on a columnwise basis here. |
|
|
do bj = jtlo,jthi |
|
|
do bi = itlo, ithi |
|
|
do j = jmin,jmax |
|
|
i = OB_Iw(J,bi,bj) |
|
|
|
|
|
cgg The barotropic velocity is stored in the level 1. |
|
|
ubaro = tmpfldyz(j,1,bi,bj) |
|
|
tmpfldyz(j,1,bi,bj) = 0.d0 |
|
|
utop = 0.d0 |
|
|
|
|
|
do k = 1,Nr |
|
|
cgg If cells are not full, this should be modified with hFac. |
|
|
cgg |
|
|
cgg The xx field (tmpfldxz) does not contain the velocity at the |
|
|
cgg surface level. This velocity is not independent; it must |
|
|
cgg exactly balance the volume flux, since we are dealing with |
|
|
cgg the baroclinic velocity structure.. |
|
|
utop = tmpfldyz(j,k,bi,bj)* |
|
|
& maskS(i,j,k,bi,bj) * delR(k) + utop |
|
|
cgg Add the barotropic velocity component. |
|
|
if (maskS(i,j,k,bi,bj) .ne. 0.) then |
|
|
tmpfldyz(j,k,bi,bj) = tmpfldyz(j,k,bi,bj)+ ubaro |
|
|
endif |
|
|
enddo |
|
|
cgg Compute the baroclinic velocity at level 1. Should balance flux. |
|
|
tmpfldyz(j,1,bi,bj) = tmpfldyz(j,1,bi,bj) |
|
|
& - utop / delR(1) |
|
|
enddo |
|
|
enddo |
|
|
enddo |
|
|
endif |
|
|
endif |
|
|
|
|
|
do bj = jtlo,jthi |
|
|
do bi = itlo,ithi |
|
|
do k = 1,nr |
|
|
do j = jmin,jmax |
|
|
xx_obcsw1 (j,k,bi,bj,iobcs) = tmpfldyz (j,k,bi,bj) |
|
|
cgg & * maskyz (j,k,bi,bj) |
|
|
enddo |
|
|
enddo |
|
225 |
enddo |
enddo |
226 |
|
do k = 1,Nr |
227 |
|
if (iobcs .eq. 3) then |
228 |
|
tmpfldyz(j,k,bi,bj) = tmpz(k,bi,bj) |
229 |
|
& *recip_hFacW(i+ip1,j,k,bi,bj) |
230 |
|
else |
231 |
|
tmpfldyz(j,k,bi,bj) = tmpz(k,bi,bj) |
232 |
|
& *recip_hFacS(i,j,k,bi,bj) |
233 |
|
endif |
234 |
|
end do |
235 |
|
enddo |
236 |
|
endif |
237 |
|
#endif |
238 |
|
do k = 1,nr |
239 |
|
do j = jmin,jmax |
240 |
|
xx_obcsw1 (j,k,bi,bj,iobcs) = tmpfldyz (j,k,bi,bj) |
241 |
|
cgg & * maskyz (j,k,bi,bj) |
242 |
|
enddo |
243 |
enddo |
enddo |
244 |
endif |
enddo |
245 |
|
enddo |
246 |
|
endif |
247 |
|
|
248 |
c-- Add control to model variable. |
c-- Add control to model variable. |
249 |
do bj = jtlo, jthi |
do bj = jtlo, jthi |
250 |
do bi = itlo, ithi |
do bi = itlo, ithi |
251 |
c-- Calculate mask for tracer cells (0 => land, 1 => water). |
c-- Calculate mask for tracer cells (0 => land, 1 => water). |
252 |
do k = 1,nr |
do k = 1,nr |
253 |
do j = 1,sny |
do j = 1,sny |
254 |
i = OB_Iw(j,bi,bj) |
i = OB_Iw(j,bi,bj) |
255 |
if (iobcs .EQ. 1) then |
IF ( i.EQ.OB_indexNone ) i = 1 |
256 |
OBWt(j,k,bi,bj) = OBWt (j,k,bi,bj) |
if (iobcs .EQ. 1) then |
257 |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
OBWt(j,k,bi,bj) = OBWt (j,k,bi,bj) |
258 |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
259 |
OBWt(j,k,bi,bj) = OBWt(j,k,bi,bj) |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
260 |
& *maskW(i+ip1,j,k,bi,bj) |
OBWt(j,k,bi,bj) = OBWt(j,k,bi,bj) |
261 |
else if (iobcs .EQ. 2) then |
& *maskW(i+ip1,j,k,bi,bj) |
262 |
OBWs(j,k,bi,bj) = OBWs (j,k,bi,bj) |
else if (iobcs .EQ. 2) then |
263 |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
OBWs(j,k,bi,bj) = OBWs (j,k,bi,bj) |
264 |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
265 |
OBWs(j,k,bi,bj) = OBWs(j,k,bi,bj) |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
266 |
& *maskW(i+ip1,j,k,bi,bj) |
OBWs(j,k,bi,bj) = OBWs(j,k,bi,bj) |
267 |
else if (iobcs .EQ. 3) then |
& *maskW(i+ip1,j,k,bi,bj) |
268 |
OBWu(j,k,bi,bj) = OBWu (j,k,bi,bj) |
else if (iobcs .EQ. 3) then |
269 |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
OBWu(j,k,bi,bj) = OBWu (j,k,bi,bj) |
270 |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
271 |
OBWu(j,k,bi,bj) = OBWu(j,k,bi,bj) |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
272 |
& *maskW(i+ip1,j,k,bi,bj) |
OBWu(j,k,bi,bj) = OBWu(j,k,bi,bj) |
273 |
else if (iobcs .EQ. 4) then |
& *maskW(i+ip1,j,k,bi,bj) |
274 |
OBWv(j,k,bi,bj) = OBWv (j,k,bi,bj) |
else if (iobcs .EQ. 4) then |
275 |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
OBWv(j,k,bi,bj) = OBWv (j,k,bi,bj) |
276 |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
277 |
OBWv(j,k,bi,bj) = OBWv(j,k,bi,bj) |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
278 |
& *maskS(i,j,k,bi,bj) |
OBWv(j,k,bi,bj) = OBWv(j,k,bi,bj) |
279 |
endif |
& *maskS(i,j,k,bi,bj) |
280 |
enddo |
endif |
281 |
enddo |
enddo |
282 |
enddo |
enddo |
283 |
enddo |
enddo |
284 |
|
enddo |
285 |
|
|
286 |
C-- End over iobcs loop |
C-- End over iobcs loop |
287 |
enddo |
enddo |
288 |
|
|
|
#else /* ALLOW_OBCSW_CONTROL undefined */ |
|
|
|
|
|
c == routine arguments == |
|
|
|
|
|
_RL mytime |
|
|
integer myiter |
|
|
integer mythid |
|
|
|
|
|
c-- CPP flag ALLOW_OBCSW_CONTROL undefined. |
|
|
|
|
289 |
#endif /* ALLOW_OBCSW_CONTROL */ |
#endif /* ALLOW_OBCSW_CONTROL */ |
290 |
|
|
291 |
|
return |
292 |
end |
end |
|
|
|