1 |
|
2 |
#include "CTRL_CPPOPTIONS.h" |
3 |
#ifdef ALLOW_OBCS |
4 |
# include "OBCS_OPTIONS.h" |
5 |
#endif |
6 |
|
7 |
|
8 |
subroutine ctrl_getobcsw( |
9 |
I mytime, |
10 |
I myiter, |
11 |
I mythid |
12 |
& ) |
13 |
|
14 |
c ================================================================== |
15 |
c SUBROUTINE ctrl_getobcsw |
16 |
c ================================================================== |
17 |
c |
18 |
c o Get western obc of the control vector and add it |
19 |
c to dyn. fields |
20 |
c |
21 |
c started: heimbach@mit.edu, 29-Aug-2001 |
22 |
c |
23 |
c modified: gebbie@mit.edu, 18-Mar-2003 |
24 |
c ================================================================== |
25 |
c SUBROUTINE ctrl_getobcsw |
26 |
c ================================================================== |
27 |
|
28 |
implicit none |
29 |
|
30 |
#ifdef ALLOW_OBCSW_CONTROL |
31 |
|
32 |
c == global variables == |
33 |
|
34 |
#include "EEPARAMS.h" |
35 |
#include "SIZE.h" |
36 |
#include "PARAMS.h" |
37 |
#include "GRID.h" |
38 |
#include "OBCS.h" |
39 |
|
40 |
#include "ctrl.h" |
41 |
#include "ctrl_dummy.h" |
42 |
#include "optim.h" |
43 |
|
44 |
c == routine arguments == |
45 |
|
46 |
_RL mytime |
47 |
integer myiter |
48 |
integer mythid |
49 |
|
50 |
c == local variables == |
51 |
|
52 |
integer bi,bj |
53 |
integer i,j,k |
54 |
integer itlo,ithi |
55 |
integer jtlo,jthi |
56 |
integer jmin,jmax |
57 |
integer imin,imax |
58 |
integer ilobcsw |
59 |
integer iobcs |
60 |
integer ip1 |
61 |
|
62 |
_RL dummy |
63 |
_RL obcswfac |
64 |
logical obcswfirst |
65 |
logical obcswchanged |
66 |
integer obcswcount0 |
67 |
integer obcswcount1 |
68 |
|
69 |
cgg _RL maskyz (1-oly:sny+oly,nr,nsx,nsy) |
70 |
|
71 |
logical doglobalread |
72 |
logical ladinit |
73 |
|
74 |
character*(80) fnameobcsw |
75 |
|
76 |
cgg( Variables for splitting barotropic/baroclinic vels. |
77 |
_RL ubaro |
78 |
_RL utop |
79 |
cgg) |
80 |
|
81 |
c == external functions == |
82 |
|
83 |
integer ilnblnk |
84 |
external ilnblnk |
85 |
|
86 |
|
87 |
c == end of interface == |
88 |
|
89 |
jtlo = mybylo(mythid) |
90 |
jthi = mybyhi(mythid) |
91 |
itlo = mybxlo(mythid) |
92 |
ithi = mybxhi(mythid) |
93 |
jmin = 1-oly |
94 |
jmax = sny+oly |
95 |
imin = 1-olx |
96 |
imax = snx+olx |
97 |
ip1 = 1 |
98 |
|
99 |
cgg( Initialize variables for balancing volume flux. |
100 |
ubaro = 0.d0 |
101 |
utop = 0.d0 |
102 |
cgg) |
103 |
|
104 |
c-- Now, read the control vector. |
105 |
doglobalread = .false. |
106 |
ladinit = .false. |
107 |
|
108 |
if (optimcycle .ge. 0) then |
109 |
ilobcsw=ilnblnk( xx_obcsw_file ) |
110 |
write(fnameobcsw(1:80),'(2a,i10.10)') |
111 |
& xx_obcsw_file(1:ilobcsw), '.', optimcycle |
112 |
endif |
113 |
|
114 |
c-- Get the counters, flags, and the interpolation factor. |
115 |
call ctrl_get_gen_rec( |
116 |
I xx_obcswstartdate, xx_obcswperiod, |
117 |
O obcswfac, obcswfirst, obcswchanged, |
118 |
O obcswcount0,obcswcount1, |
119 |
I mytime, myiter, mythid ) |
120 |
|
121 |
do iobcs = 1,nobcs |
122 |
if ( obcswfirst ) then |
123 |
call active_read_yz( fnameobcsw, tmpfldyz, |
124 |
& (obcswcount0-1)*nobcs+iobcs, |
125 |
& doglobalread, ladinit, optimcycle, |
126 |
& mythid, xx_obcsw_dummy ) |
127 |
|
128 |
#ifdef ALLOW_CTRL_OBCS_BALANCE |
129 |
|
130 |
if ( optimcycle .gt. 0) then |
131 |
if (iobcs .eq. 3) then |
132 |
cgg Special attention is needed for the normal velocity. |
133 |
cgg For the north, this is the v velocity, iobcs = 4. |
134 |
cgg This is done on a columnwise basis here. |
135 |
do bj = jtlo,jthi |
136 |
do bi = itlo, ithi |
137 |
do j = jmin,jmax |
138 |
i = OB_Iw(J,bi,bj) |
139 |
|
140 |
cgg The barotropic velocity is stored in the level 1. |
141 |
ubaro = tmpfldyz(j,1,bi,bj) |
142 |
tmpfldyz(j,1,bi,bj) = 0.d0 |
143 |
utop = 0.d0 |
144 |
|
145 |
do k = 1,Nr |
146 |
cgg If cells are not full, this should be modified with hFac. |
147 |
cgg |
148 |
cgg The xx field (tmpfldxz) does not contain the velocity at the |
149 |
cgg surface level. This velocity is not independent; it must |
150 |
cgg exactly balance the volume flux, since we are dealing with |
151 |
cgg the baroclinic velocity structure.. |
152 |
utop = tmpfldyz(j,k,bi,bj)* |
153 |
& maskW(i+ip1,j,k,bi,bj) * delR(k) + utop |
154 |
cgg Add the barotropic velocity component. |
155 |
if (maskW(i+ip1,j,k,bi,bj) .ne. 0.) then |
156 |
tmpfldyz(j,k,bi,bj) = tmpfldyz(j,k,bi,bj)+ ubaro |
157 |
endif |
158 |
enddo |
159 |
cgg Compute the baroclinic velocity at level 1. Should balance flux. |
160 |
tmpfldyz(j,1,bi,bj) = tmpfldyz(j,1,bi,bj) |
161 |
& - utop / delR(1) |
162 |
enddo |
163 |
enddo |
164 |
enddo |
165 |
endif |
166 |
if (iobcs .eq. 4) then |
167 |
cgg Special attention is needed for the normal velocity. |
168 |
cgg For the north, this is the v velocity, iobcs = 4. |
169 |
cgg This is done on a columnwise basis here. |
170 |
do bj = jtlo,jthi |
171 |
do bi = itlo, ithi |
172 |
do j = jmin,jmax |
173 |
i = OB_Iw(J,bi,bj) |
174 |
|
175 |
cgg The barotropic velocity is stored in the level 1. |
176 |
ubaro = tmpfldyz(j,1,bi,bj) |
177 |
tmpfldyz(j,1,bi,bj) = 0.d0 |
178 |
utop = 0.d0 |
179 |
|
180 |
do k = 1,Nr |
181 |
cgg If cells are not full, this should be modified with hFac. |
182 |
cgg |
183 |
cgg The xx field (tmpfldxz) does not contain the velocity at the |
184 |
cgg surface level. This velocity is not independent; it must |
185 |
cgg exactly balance the volume flux, since we are dealing with |
186 |
cgg the baroclinic velocity structure.. |
187 |
utop = tmpfldyz(j,k,bi,bj)* |
188 |
& maskS(i,j,k,bi,bj) * delR(k) + utop |
189 |
cgg Add the barotropic velocity component. |
190 |
if (maskS(i,j,k,bi,bj) .ne. 0.) then |
191 |
tmpfldyz(j,k,bi,bj) = tmpfldyz(j,k,bi,bj)+ ubaro |
192 |
endif |
193 |
enddo |
194 |
cgg Compute the baroclinic velocity at level 1. Should balance flux. |
195 |
tmpfldyz(j,1,bi,bj) = tmpfldyz(j,1,bi,bj) |
196 |
& - utop / delR(1) |
197 |
enddo |
198 |
enddo |
199 |
enddo |
200 |
endif |
201 |
endif |
202 |
|
203 |
#endif /* ALLOW_CTRL_OBCS_BALANCE */ |
204 |
|
205 |
do bj = jtlo,jthi |
206 |
do bi = itlo,ithi |
207 |
do k = 1,nr |
208 |
do j = jmin,jmax |
209 |
xx_obcsw1(j,k,bi,bj,iobcs) = tmpfldyz (j,k,bi,bj) |
210 |
cgg & * maskyz (j,k,bi,bj) |
211 |
enddo |
212 |
enddo |
213 |
enddo |
214 |
enddo |
215 |
endif |
216 |
|
217 |
if ( (obcswfirst) .or. (obcswchanged)) then |
218 |
|
219 |
cgg( This is a terribly long way to do it. However, the dimensions do not exactly |
220 |
cgg match up. I will blame Fortran for the ugliness. |
221 |
|
222 |
do bj = jtlo,jthi |
223 |
do bi = itlo,ithi |
224 |
do k = 1,nr |
225 |
do j = jmin,jmax |
226 |
tmpfldyz(j,k,bi,bj) = xx_obcsw1(j,k,bi,bj,iobcs) |
227 |
enddo |
228 |
enddo |
229 |
enddo |
230 |
enddo |
231 |
|
232 |
call exf_swapffields_yz( tmpfldyz2, tmpfldyz, mythid) |
233 |
|
234 |
do bj = jtlo,jthi |
235 |
do bi = itlo,ithi |
236 |
do k = 1,nr |
237 |
do j = jmin,jmax |
238 |
xx_obcsw0(j,k,bi,bj,iobcs) = tmpfldyz2(j,k,bi,bj) |
239 |
enddo |
240 |
enddo |
241 |
enddo |
242 |
enddo |
243 |
|
244 |
call active_read_yz( fnameobcsw, tmpfldyz, |
245 |
& (obcswcount1-1)*nobcs+iobcs, |
246 |
& doglobalread, ladinit, optimcycle, |
247 |
& mythid, xx_obcsw_dummy ) |
248 |
|
249 |
#ifdef ALLOW_CTRL_OBCS_BALANCE |
250 |
|
251 |
if ( optimcycle .gt. 0) then |
252 |
if (iobcs .eq. 3) then |
253 |
cgg Special attention is needed for the normal velocity. |
254 |
cgg For the north, this is the v velocity, iobcs = 4. |
255 |
cgg This is done on a columnwise basis here. |
256 |
do bj = jtlo,jthi |
257 |
do bi = itlo, ithi |
258 |
do j = jmin,jmax |
259 |
i = OB_Iw(J,bi,bj) |
260 |
|
261 |
cgg The barotropic velocity is stored in the level 1. |
262 |
ubaro = tmpfldyz(j,1,bi,bj) |
263 |
tmpfldyz(j,1,bi,bj) = 0.d0 |
264 |
utop = 0.d0 |
265 |
|
266 |
do k = 1,Nr |
267 |
cgg If cells are not full, this should be modified with hFac. |
268 |
cgg |
269 |
cgg The xx field (tmpfldxz) does not contain the velocity at the |
270 |
cgg surface level. This velocity is not independent; it must |
271 |
cgg exactly balance the volume flux, since we are dealing with |
272 |
cgg the baroclinic velocity structure.. |
273 |
utop = tmpfldyz(j,k,bi,bj)* |
274 |
& maskW(i+ip1,j,k,bi,bj) * delR(k) + utop |
275 |
cgg Add the barotropic velocity component. |
276 |
if (maskW(i+ip1,j,k,bi,bj) .ne. 0.) then |
277 |
tmpfldyz(j,k,bi,bj) = tmpfldyz(j,k,bi,bj)+ ubaro |
278 |
endif |
279 |
enddo |
280 |
cgg Compute the baroclinic velocity at level 1. Should balance flux. |
281 |
tmpfldyz(j,1,bi,bj) = tmpfldyz(j,1,bi,bj) |
282 |
& - utop / delR(1) |
283 |
enddo |
284 |
enddo |
285 |
enddo |
286 |
endif |
287 |
if (iobcs .eq. 4) then |
288 |
cgg Special attention is needed for the normal velocity. |
289 |
cgg For the north, this is the v velocity, iobcs = 4. |
290 |
cgg This is done on a columnwise basis here. |
291 |
do bj = jtlo,jthi |
292 |
do bi = itlo, ithi |
293 |
do j = jmin,jmax |
294 |
i = OB_Iw(J,bi,bj) |
295 |
|
296 |
cgg The barotropic velocity is stored in the level 1. |
297 |
ubaro = tmpfldyz(j,1,bi,bj) |
298 |
tmpfldyz(j,1,bi,bj) = 0.d0 |
299 |
utop = 0.d0 |
300 |
|
301 |
do k = 1,Nr |
302 |
cgg If cells are not full, this should be modified with hFac. |
303 |
cgg |
304 |
cgg The xx field (tmpfldxz) does not contain the velocity at the |
305 |
cgg surface level. This velocity is not independent; it must |
306 |
cgg exactly balance the volume flux, since we are dealing with |
307 |
cgg the baroclinic velocity structure.. |
308 |
utop = tmpfldyz(j,k,bi,bj)* |
309 |
& maskS(i,j,k,bi,bj) * delR(k) + utop |
310 |
cgg Add the barotropic velocity component. |
311 |
if (maskS(i,j,k,bi,bj) .ne. 0.) then |
312 |
tmpfldyz(j,k,bi,bj) = tmpfldyz(j,k,bi,bj)+ ubaro |
313 |
endif |
314 |
enddo |
315 |
cgg Compute the baroclinic velocity at level 1. Should balance flux. |
316 |
tmpfldyz(j,1,bi,bj) = tmpfldyz(j,1,bi,bj) |
317 |
& - utop / delR(1) |
318 |
enddo |
319 |
enddo |
320 |
enddo |
321 |
endif |
322 |
endif |
323 |
|
324 |
#endif /* ALLOW_CTRL_OBCS_BALANCE */ |
325 |
|
326 |
do bj = jtlo,jthi |
327 |
do bi = itlo,ithi |
328 |
do k = 1,nr |
329 |
do j = jmin,jmax |
330 |
xx_obcsw1 (j,k,bi,bj,iobcs) = tmpfldyz (j,k,bi,bj) |
331 |
cgg & * maskyz (j,k,bi,bj) |
332 |
enddo |
333 |
enddo |
334 |
enddo |
335 |
enddo |
336 |
endif |
337 |
|
338 |
c-- Add control to model variable. |
339 |
do bj = jtlo, jthi |
340 |
do bi = itlo, ithi |
341 |
c-- Calculate mask for tracer cells (0 => land, 1 => water). |
342 |
do k = 1,nr |
343 |
do j = 1,sny |
344 |
i = OB_Iw(j,bi,bj) |
345 |
if (iobcs .EQ. 1) then |
346 |
OBWt(j,k,bi,bj) = OBWt (j,k,bi,bj) |
347 |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
348 |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
349 |
OBWt(j,k,bi,bj) = OBWt(j,k,bi,bj) |
350 |
& *maskW(i+ip1,j,k,bi,bj) |
351 |
else if (iobcs .EQ. 2) then |
352 |
OBWs(j,k,bi,bj) = OBWs (j,k,bi,bj) |
353 |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
354 |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
355 |
OBWs(j,k,bi,bj) = OBWs(j,k,bi,bj) |
356 |
& *maskW(i+ip1,j,k,bi,bj) |
357 |
else if (iobcs .EQ. 3) then |
358 |
OBWu(j,k,bi,bj) = OBWu (j,k,bi,bj) |
359 |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
360 |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
361 |
OBWu(j,k,bi,bj) = OBWu(j,k,bi,bj) |
362 |
& *maskW(i+ip1,j,k,bi,bj) |
363 |
else if (iobcs .EQ. 4) then |
364 |
OBWv(j,k,bi,bj) = OBWv (j,k,bi,bj) |
365 |
& + obcswfac *xx_obcsw0(j,k,bi,bj,iobcs) |
366 |
& + (1. _d 0 - obcswfac)*xx_obcsw1(j,k,bi,bj,iobcs) |
367 |
OBWv(j,k,bi,bj) = OBWv(j,k,bi,bj) |
368 |
& *maskS(i,j,k,bi,bj) |
369 |
endif |
370 |
enddo |
371 |
enddo |
372 |
enddo |
373 |
enddo |
374 |
|
375 |
C-- End over iobcs loop |
376 |
enddo |
377 |
|
378 |
#else /* ALLOW_OBCSW_CONTROL undefined */ |
379 |
|
380 |
c == routine arguments == |
381 |
|
382 |
_RL mytime |
383 |
integer myiter |
384 |
integer mythid |
385 |
|
386 |
c-- CPP flag ALLOW_OBCSW_CONTROL undefined. |
387 |
|
388 |
#endif /* ALLOW_OBCSW_CONTROL */ |
389 |
|
390 |
end |
391 |
|