/[MITgcm]/MITgcm/pkg/aim_v23/phy_driver.F
ViewVC logotype

Annotation of /MITgcm/pkg/aim_v23/phy_driver.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.8 - (hide annotations) (download)
Thu Jan 21 00:10:04 2010 UTC (14 years, 4 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint62c, checkpoint62g, checkpoint62f, checkpoint62e, checkpoint62d, checkpoint62k, checkpoint62j, checkpoint62i, checkpoint62h, checkpoint62m, checkpoint62l, checkpoint62b
Changes since 1.7: +74 -43 lines
move local variables (not in common block) out of header files

1 jmc 1.8 C $Header: /u/gcmpack/MITgcm/pkg/aim_v23/phy_driver.F,v 1.7 2006/01/26 00:18:54 jmc Exp $
2 jmc 1.1 C $Name: $
3    
4     #include "AIM_OPTIONS.h"
5    
6 jmc 1.8 CBOP
7     C !ROUTINE: PHY_DRIVER
8     C !INTERFACE:
9 jmc 1.7 SUBROUTINE PHY_DRIVER( tYear, usePkgDiag,
10     I bi, bj, myTime, myIter, myThid )
11 jmc 1.1
12 jmc 1.8
13     C !DESCRIPTION: \bv
14 jmc 1.1 C------------------------
15     C-- SUBROUTINE PHYDRIVER (tYear, myTime, bi, bj, myThid )
16     C-- Purpose: stand-alone driver for physical parametrization routines
17     C-- Input : TYEAR : fraction of year (0 = 1jan.00, 1 = 31dec.24)
18     C-- grid-point model fields in common block: PHYGR1
19     C-- forcing fields in common blocks : LSMASK, FORFIX, FORCIN
20     C-- Output : Diagnosed upper-air variables in common block: PHYGR2
21     C-- Diagnosed surface variables in common block: PHYGR3
22     C-- Physical param. tendencies in common block: PHYTEN
23     C-- Surface and upper boundary fluxes in common block: FLUXES
24     C-------
25 jmc 1.8 C Note: tendencies are not /dpFac here but later in AIM_AIM2DYN
26 jmc 1.1 C-------
27 jmc 1.8 C from SPEDDY code: (part of original code left with c_FM)
28     C * S/R PHYPAR : except interp. dynamical Var. from Spectral of grid point
29     C here dynamical var. are loaded within S/R AIM_DYN2AIM.
30     C * S/R FORDATE: only the CALL SOL_OZ (done once / day in SPEEDY)
31     C------------------------
32     C \ev
33 jmc 1.1
34 jmc 1.8 C !USES:
35 jmc 1.1 IMPLICIT NONE
36    
37 jmc 1.8 C == Global variables ===
38 jmc 1.1
39     C-- size for MITgcm & Physics package :
40 jmc 1.7 #include "AIM_SIZE.h"
41 jmc 1.1 #include "EEPARAMS.h"
42 jmc 1.3
43     C-- Physics package
44     #include "AIM_PARAMS.h"
45 jmc 1.1 #include "AIM_GRID.h"
46    
47     C Constants + functions of sigma and latitude
48     #include "com_physcon.h"
49    
50     C Model variables, tendencies and fluxes on gaussian grid
51     #include "com_physvar.h"
52    
53     C Surface forcing fields (time-inv. or functions of seasonal cycle)
54     #include "com_forcing.h"
55    
56     C Constants for forcing fields:
57     #include "com_forcon.h"
58    
59 jmc 1.8 C Radiation scheme variables
60 jmc 1.1 #include "com_radvar.h"
61    
62 jmc 1.3 C Radiation constants
63     #include "com_radcon.h"
64    
65 jmc 1.1 C Logical flags
66     c_FM include "com_lflags.h"
67    
68 jmc 1.8 C !INPUT/OUTPUT PARAMETERS:
69     C == Routine arguments ==
70     C tYear :: Fraction into year
71     C usePkgDiag :: logical flag, true if using Diagnostics PKG
72     C bi, bj :: Tile index
73     C myTime :: Current time of simulation ( s )
74     C myIter :: Current iteration number in simulation
75     C myThid :: Number of this instance of the routine
76     _RL tYear
77 jmc 1.7 LOGICAL usePkgDiag
78     INTEGER bi,bj
79 jmc 1.8 _RL myTime
80 jmc 1.7 INTEGER myIter, myThid
81 jmc 1.8 CEOP
82 jmc 1.1
83     #ifdef ALLOW_AIM
84 jmc 1.8 C !FUNCTIONS:
85     C !LOCAL VARIABLES:
86     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
87     C-- Local Variables originally (Speedy) in common bloc (com_physvar.h):
88     C TG1 :: absolute temperature
89     C QG1 :: specific humidity (g/kg)
90     C VsurfSq :: Square of surface wind speed (grid position = as T,Q)
91     C SE :: dry static energy <- replaced by Pot.Temp.
92     C QSAT :: saturation specific humidity (g/kg)
93     C PSG :: surface pressure (normalized)
94     _RL TG1 (NGP,NLEV)
95     _RL QG1 (NGP,NLEV)
96     _RL VsurfSq(NGP)
97     _RL SE (NGP,NLEV)
98     _RL QSAT (NGP,NLEV)
99     _RL PSG (NGP)
100     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
101 jmc 1.1 C-- Local variables:
102 jmc 1.8 C kGrd :: Ground level index (2-dim)
103 jmc 1.3 C dpFac :: cell delta_P fraction (3-dim)
104     C dTskin :: temp. correction for daily-cycle heating [K]
105 jmc 1.6 C T1s :: near-surface air temperature (from Pot.Temp)
106     C DENVV :: surface flux (sens,lat.) coeff. (=Rho*|V|) [kg/m2/s]
107     C Shf0 :: sensible heat flux over freezing surf.
108     C dShf :: sensible heat flux derivative relative to surf. temp
109 jmc 1.3 C Evp0 :: evaporation computed over freezing surface (Ts=0.oC)
110 jmc 1.8 C dEvp :: evaporation derivative relative to surf. temp
111 jmc 1.3 C Slr0 :: upward long wave radiation over freezing surf.
112     C dSlr :: upward long wave rad. derivative relative to surf. temp
113     C sFlx :: net surface flux (+=down) function of surf. temp Ts:
114     C 0: Flux(Ts=0.oC) ; 1: Flux(Ts^n) ; 2: d.Flux/d.Ts(Ts^n)
115 jmc 1.1 LOGICAL LRADSW
116     INTEGER ICLTOP(NGP)
117     INTEGER kGround(NGP)
118     _RL dpFac(NGP,NLEV)
119     c_FM REAL RPS(NGP), ST4S(NGP)
120     _RL ST4S(NGP)
121     _RL PSG_1(NGP), RPS_1
122 jmc 1.6 _RL dTskin(NGP), T1s(NGP), DENVV(NGP)
123     _RL Shf0(NGP), dShf(NGP), Evp0(NGP), dEvp(NGP)
124     _RL Slr0(NGP), dSlr(NGP), sFlx(NGP,0:2)
125 jmc 1.1
126     INTEGER J, K
127    
128 jmc 1.6 #ifdef ALLOW_CLR_SKY_DIAG
129     _RL dummyR(NGP)
130     INTEGER dummyI(NGP)
131     #endif
132 jmc 1.1 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
133    
134     C-- 1. Compute grid-point fields
135    
136     C- 1.1 Convert model spectral variables to grid-point variables
137    
138     CALL AIM_DYN2AIM(
139     O TG1, QG1, SE, VsurfSq, PSG, dpFac, kGround,
140     I bi, bj, myTime, myIter, myThid )
141    
142     C- 1.2 Compute thermodynamic variables
143    
144     C- 1.2.a Surface pressure (ps), 1/ps and surface temperature
145     RPS_1 = 1. _d 0
146     DO J=1,NGP
147     PSG_1(J)=1. _d 0
148     c_FM PSG(J)=EXP(PSLG1(J))
149     c_FM RPS(J)=1./PSG(J)
150     ENDDO
151    
152     C 1.2.b Dry static energy
153     C <= replaced by Pot.Temp in aim_dyn2aim
154     c DO K=1,NLEV
155     c DO J=1,NGP
156 jmc 1.8 c_FM SE(J,K)=CP*TG1(J,K)+PHIG1(J,K)
157 jmc 1.1 c ENDDO
158     c ENDDO
159    
160     C 1.2.c Relative humidity and saturation spec. humidity
161    
162     DO K=1,NLEV
163     c_FM CALL SHTORH (1,NGP,TG1(1,K),PSG,SIG(K),QG1(1,K),
164     c_FM & RH(1,K),QSAT(1,K))
165     CALL SHTORH (1,NGP,TG1(1,K),PSG_1,SIG(K),QG1(1,K),
166     O RH(1,K,myThid),QSAT(1,K),
167     I myThid)
168     ENDDO
169    
170     C-- 2. Precipitation
171    
172     C 2.1 Deep convection
173    
174     c_FM CALL CONVMF (PSG,SE,QG1,QSAT,
175     c_FM & ICLTOP,CBMF,PRECNV,TT_CNV,QT_CNV)
176     CALL CONVMF (PSG,dpFac,SE,QG1,QSAT,
177     O ICLTOP,CBMF(1,myThid),PRECNV(1,myThid),
178     O TT_CNV(1,1,myThid),QT_CNV(1,1,myThid),
179     I kGround,bi,bj,myThid)
180    
181     DO K=2,NLEV
182     DO J=1,NGP
183     TT_CNV(J,K,myThid)=TT_CNV(J,K,myThid)*RPS_1*GRDSCP(K)
184     QT_CNV(J,K,myThid)=QT_CNV(J,K,myThid)*RPS_1*GRDSIG(K)
185     ENDDO
186     ENDDO
187    
188     C 2.2 Large-scale condensation
189    
190     c_FM CALL LSCOND (PSG,QG1,QSAT,
191     c_FM & PRECLS,TT_LSC,QT_LSC)
192     CALL LSCOND (PSG,dpFac,QG1,QSAT,
193     O PRECLS(1,myThid),TT_LSC(1,1,myThid),
194     O QT_LSC(1,1,myThid),
195     I kGround,bi,bj,myThid)
196    
197 jmc 1.3 IF ( aim_energPrecip ) THEN
198     C 2.3 Snow Precipitation (update TT_CNV & TT_LSC)
199 jmc 1.8 CALL SNOW_PRECIP (
200 jmc 1.3 I PSG, dpFac, SE, ICLTOP,
201     I PRECNV(1,myThid), QT_CNV(1,1,myThid),
202     I PRECLS(1,myThid), QT_LSC(1,1,myThid),
203     U TT_CNV(1,1,myThid), TT_LSC(1,1,myThid),
204     O EnPrec(1,myThid),
205     I kGround,bi,bj,myThid)
206     ELSE
207     DO J=1,NGP
208     EnPrec(J,myThid) = 0. _d 0
209     ENDDO
210     ENDIF
211    
212 jmc 1.1 C-- 3. Radiation (shortwave and longwave) and surface fluxes
213    
214     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
215     C --> from FORDATE (in SPEEDY) :
216    
217     C 3.0 Compute Incomming shortwave rad. (from FORDATE in SPEEDY)
218    
219     c_FM CALL SOL_OZ (SOLC,TYEAR)
220     CALL SOL_OZ (SOLC,tYear, snLat(1,myThid), csLat(1,myThid),
221     O FSOL, OZONE, OZUPP, ZENIT, STRATZ,
222     I bi,bj,myThid)
223    
224     C <-- from FORDATE (in SPEEDY).
225     C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
226    
227     C 3.1 Compute shortwave tendencies and initialize lw transmissivity
228    
229     C The sw radiation may be called at selected time steps
230     LRADSW = .TRUE.
231 jmc 1.8
232 jmc 1.1 IF (LRADSW) THEN
233 jmc 1.8
234 jmc 1.1 c_FM CALL RADSW (PSG,QG1,RH,ALB1,
235     c_FM & ICLTOP,CLOUDC,TSR,SSR,TT_RSW)
236 jmc 1.6 ICLTOP(1) = 1
237 jmc 1.3 CALL RADSW (PSG,dpFac,QG1,RH(1,1,myThid),ALB1(1,0,myThid),
238 jmc 1.1 I FSOL, OZONE, OZUPP, ZENIT, STRATZ,
239     O TAU2, STRATC,
240     O ICLTOP,CLOUDC(1,myThid),
241 jmc 1.3 O TSR(1,myThid),SSR(1,0,myThid),TT_RSW(1,1,myThid),
242 jmc 1.1 I kGround,bi,bj,myThid)
243 jmc 1.8
244 jmc 1.1 DO J=1,NGP
245     CLTOP(J,myThid)=SIGH(ICLTOP(J)-1)*PSG_1(J)
246     ENDDO
247 jmc 1.8
248 jmc 1.1 DO K=1,NLEV
249     DO J=1,NGP
250     TT_RSW(J,K,myThid)=TT_RSW(J,K,myThid)*RPS_1*GRDSCP(K)
251     ENDDO
252     ENDDO
253 jmc 1.8
254 jmc 1.1 ENDIF
255    
256     C 3.2 Compute downward longwave fluxes
257 jmc 1.8
258 jmc 1.1 c_FM CALL RADLW (-1,TG1,TS,ST4S,
259     c_FM & OLR,SLR,TT_RLW)
260     CALL RADLW (-1,TG1,TS(1,myThid),ST4S,
261     & OZUPP, STRATC, TAU2, FLUX, ST4A,
262 jmc 1.3 O OLR(1,myThid),SLR(1,0,myThid),TT_RLW(1,1,myThid),
263 jmc 1.1 I kGround,bi,bj,myThid)
264    
265 jmc 1.3 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
266 jmc 1.1 C 3.3. Compute surface fluxes and land skin temperature
267 jmc 1.8
268 jmc 1.1 c_FM CALL SUFLUX (PSG,UG1,VG1,TG1,QG1,RH,PHIG1,
269     c_FM & PHIS0,FMASK1,STL1,SST1,SOILW1,SSR,SLR,
270     c_FM & USTR,VSTR,SHF,EVAP,ST4S,
271 jmc 1.8 c_FM & TS,TSKIN,U0,V0,T0,Q0)
272 jmc 1.3 CALL SUFLUX_PREP(
273     I PSG, TG1, QG1, RH(1,1,myThid), SE, VsurfSq,
274 jmc 1.1 I WVSurf(1,myThid),csLat(1,myThid),fOrogr(1,myThid),
275 jmc 1.3 I FMASK1(1,1,myThid),STL1(1,myThid),SST1(1,myThid),
276     I sti1(1,myThid), SSR(1,0,myThid),
277 jmc 1.6 O SPEED0(1,myThid),DRAG(1,0,myThid),DENVV,
278     O dTskin,T1s,T0(1,myThid),Q0(1,myThid),
279 jmc 1.1 I kGround,bi,bj,myThid)
280    
281 jmc 1.3 CALL SUFLUX_LAND (
282     I PSG, FMASK1(1,1,myThid), EMISFC,
283     I STL1(1,myThid), dTskin,
284     I SOILW1(1,myThid), SSR(1,1,myThid), SLR(1,0,myThid),
285 jmc 1.6 I T1s, T0(1,myThid), Q0(1,myThid), DENVV,
286 jmc 1.3 O SHF(1,1,myThid), EVAP(1,1,myThid), SLR(1,1,myThid),
287 jmc 1.6 O Shf0, dShf, Evp0, dEvp, Slr0, dSlr, sFlx,
288 jmc 1.3 O TS(1,myThid), TSKIN(1,myThid),
289     I bi,bj,myThid)
290 jmc 1.8 #ifdef ALLOW_LAND
291 jmc 1.3 CALL AIM_LAND_IMPL(
292 jmc 1.5 I FMASK1(1,1,myThid), dTskin,
293 jmc 1.6 I Shf0, dShf, Evp0, dEvp, Slr0, dSlr,
294     U sFlx, STL1(1,myThid),
295     U SHF(1,1,myThid), EVAP(1,1,myThid), SLR(1,1,myThid),
296     O dTsurf(1,1,myThid),
297 jmc 1.3 I bi, bj, myTime, myIter, myThid)
298     #endif /* ALLOW_LAND */
299    
300     CALL SUFLUX_OCEAN(
301     I PSG, FMASK1(1,2,myThid),
302     I SST1(1,myThid),
303     I SSR(1,2,myThid), SLR(1,0,myThid),
304 jmc 1.6 O T1s, T0(1,myThid), Q0(1,myThid), DENVV,
305 jmc 1.3 O SHF(1,2,myThid), EVAP(1,2,myThid), SLR(1,2,myThid),
306     I bi,bj,myThid)
307    
308     IF ( aim_splitSIOsFx ) THEN
309     CALL SUFLUX_SICE (
310     I PSG, FMASK1(1,3,myThid), EMISFC,
311     I STI1(1,myThid), dTskin,
312     I SSR(1,3,myThid), SLR(1,0,myThid),
313 jmc 1.6 I T1s, T0(1,myThid), Q0(1,myThid), DENVV,
314 jmc 1.3 O SHF(1,3,myThid), EVAP(1,3,myThid), SLR(1,3,myThid),
315 jmc 1.6 O Shf0, dShf, Evp0, dEvp, Slr0, dSlr, sFlx,
316 jmc 1.3 O TS(1,myThid), TSKIN(1,myThid),
317     I bi,bj,myThid)
318 jmc 1.8 #ifdef ALLOW_THSICE
319 jmc 1.4 CALL AIM_SICE_IMPL(
320     I FMASK1(1,3,myThid), SSR(1,3,myThid), sFlx,
321 jmc 1.6 I Shf0, dShf, Evp0, dEvp, Slr0, dSlr,
322     U STI1(1,myThid),
323     U SHF(1,3,myThid), EVAP(1,3,myThid), SLR(1,3,myThid),
324     O dTsurf(1,3,myThid),
325 jmc 1.4 I bi, bj, myTime, myIter, myThid)
326     #endif /* ALLOW_THSICE */
327 jmc 1.3 ELSE
328     DO J=1,NGP
329 jmc 1.6 SHF (J,3,myThid) = 0. _d 0
330 jmc 1.3 EVAP(J,3,myThid) = 0. _d 0
331     SLR (J,3,myThid) = 0. _d 0
332     ENDDO
333     ENDIF
334    
335     CALL SUFLUX_POST(
336 jmc 1.8 I FMASK1(1,1,myThid), EMISFC,
337     I STL1(1,myThid), SST1(1,myThid), sti1(1,myThid),
338 jmc 1.3 I dTskin, SLR(1,0,myThid),
339 jmc 1.6 I T0(1,myThid), Q0(1,myThid), DENVV,
340 jmc 1.8 U DRAG(1,0,myThid), SHF(1,0,myThid),
341 jmc 1.3 U EVAP(1,0,myThid), SLR(1,1,myThid),
342     O ST4S, TS(1,myThid), TSKIN(1,myThid),
343     I bi,bj,myThid)
344 jmc 1.7
345     #ifdef ALLOW_DIAGNOSTICS
346     IF ( usePkgDiag ) THEN
347     CALL DIAGNOSTICS_FILL( SLR(1,0,myThid),
348     & 'DWNLWG ', 1, 1 , 3,bi,bj, myThid )
349     ENDIF
350     #endif
351 jmc 1.3 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
352    
353 jmc 1.1 C 3.4 Compute upward longwave fluxes, convert them to tendencies
354     C and add shortwave tendencies
355    
356     c_FM CALL RADLW (1,TG1,TS,ST4S,
357     c_FM & OLR,SLR,TT_RLW)
358     CALL RADLW (1,TG1,TS(1,myThid),ST4S,
359     & OZUPP, STRATC, TAU2, FLUX, ST4A,
360 jmc 1.3 O OLR(1,myThid),SLR(1,0,myThid),TT_RLW(1,1,myThid),
361 jmc 1.1 I kGround,bi,bj,myThid)
362 jmc 1.8
363 jmc 1.1 DO K=1,NLEV
364     DO J=1,NGP
365     TT_RLW(J,K,myThid)=TT_RLW(J,K,myThid)*RPS_1*GRDSCP(K)
366     c_FM TTEND (J,K)=TTEND(J,K)+TT_RSW(J,K)+TT_RLW(J,K)
367     ENDDO
368 jmc 1.8 ENDDO
369 jmc 1.1
370 jmc 1.6 #ifdef ALLOW_CLR_SKY_DIAG
371     C 3.5 Compute clear-sky radiation (for diagnostics only)
372     IF ( aim_clrSkyDiag ) THEN
373 jmc 1.8
374 jmc 1.6 C 3.5.1 Compute shortwave tendencies
375     dummyI(1) = -1
376     CALL RADSW (PSG,dpFac,QG1,RH(1,1,myThid),ALB1(1,0,myThid),
377     I FSOL, OZONE, OZUPP, ZENIT, STRATZ,
378     O TAU2, STRATC,
379     O dummyI, dummyR,
380     O TSWclr(1,myThid), SSWclr(1,myThid), TT_SWclr(1,1,myThid),
381     I kGround,bi,bj,myThid)
382 jmc 1.8
383 jmc 1.6 C 3.5.2 Compute downward longwave fluxes
384 jmc 1.8
385 jmc 1.6 CALL RADLW (-1,TG1,TS(1,myThid),ST4S,
386     & OZUPP, STRATC, TAU2, FLUX, ST4A,
387     O OLWclr(1,myThid), SLWclr(1,myThid), TT_LWclr(1,1,myThid),
388     I kGround,bi,bj,myThid)
389    
390     C 3.5.3 Compute upward longwave fluxes, convert them to tendencies
391    
392     CALL RADLW (1,TG1,TS(1,myThid),ST4S,
393     & OZUPP, STRATC, TAU2, FLUX, ST4A,
394     O OLWclr(1,myThid), SLWclr(1,myThid), TT_LWclr(1,1,myThid),
395     I kGround,bi,bj,myThid)
396 jmc 1.8
397 jmc 1.6 DO K=1,NLEV
398     DO J=1,NGP
399     TT_SWclr(J,K,myThid)=TT_SWclr(J,K,myThid)*RPS_1*GRDSCP(K)
400     TT_LWclr(J,K,myThid)=TT_LWclr(J,K,myThid)*RPS_1*GRDSCP(K)
401     ENDDO
402 jmc 1.8 ENDDO
403 jmc 1.6
404     ENDIF
405     #endif /* ALLOW_CLR_SKY_DIAG */
406    
407 jmc 1.1 C-- 4. PBL interactions with lower troposphere
408    
409     C 4.1 Vertical diffusion and shallow convection
410 jmc 1.8
411 jmc 1.1 c_FM CALL VDIFSC (UG1,VG1,SE,RH,QG1,QSAT,PHIG1,
412     c_FM & UT_PBL,VT_PBL,TT_PBL,QT_PBL)
413     CALL VDIFSC (dpFac, SE, RH(1,1,myThid), QG1, QSAT,
414     O TT_PBL(1,1,myThid),QT_PBL(1,1,myThid),
415     I kGround,bi,bj,myThid)
416 jmc 1.8
417 jmc 1.1 C 4.2 Add tendencies due to surface fluxes
418 jmc 1.8
419 jmc 1.1 DO J=1,NGP
420     c_FM UT_PBL(J,NLEV)=UT_PBL(J,NLEV)+USTR(J,3)*RPS(J)*GRDSIG(NLEV)
421     c_FM VT_PBL(J,NLEV)=VT_PBL(J,NLEV)+VSTR(J,3)*RPS(J)*GRDSIG(NLEV)
422     c_FM TT_PBL(J,NLEV)=TT_PBL(J,NLEV)+ SHF(J,3)*RPS(J)*GRDSCP(NLEV)
423     c_FM QT_PBL(J,NLEV)=QT_PBL(J,NLEV)+EVAP(J,3)*RPS(J)*GRDSIG(NLEV)
424     K = kGround(J)
425     IF ( K.GT.0 ) THEN
426     TT_PBL(J,K,myThid) = TT_PBL(J,K,myThid)
427 jmc 1.3 & + SHF(J,0,myThid) *RPS_1*GRDSCP(K)
428 jmc 1.1 QT_PBL(J,K,myThid) = QT_PBL(J,K,myThid)
429 jmc 1.3 & + EVAP(J,0,myThid)*RPS_1*GRDSIG(K)
430 jmc 1.1 ENDIF
431     ENDDO
432 jmc 1.8
433 jmc 1.1 c_FM DO K=1,NLEV
434     c_FM DO J=1,NGP
435     c_FM UTEND(J,K)=UTEND(J,K)+UT_PBL(J,K)
436     c_FM VTEND(J,K)=VTEND(J,K)+VT_PBL(J,K)
437     c_FM TTEND(J,K)=TTEND(J,K)+TT_PBL(J,K)
438     c_FM QTEND(J,K)=QTEND(J,K)+QT_PBL(J,K)
439     c_FM ENDDO
440 jmc 1.8 c_FM ENDDO
441 jmc 1.1
442 jmc 1.8 #endif /* ALLOW_AIM */
443 jmc 1.1
444     RETURN
445     END

  ViewVC Help
Powered by ViewVC 1.1.22