C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/pkg/aim_v23/aim_aim2sioce.F,v 1.9 2013/05/02 20:10:14 jmc Exp $ C $Name: $ #include "AIM_OPTIONS.h" #ifdef ALLOW_THSICE #include "THSICE_OPTIONS.h" #endif CBOP C !ROUTINE: AIM_AIM2SIOCE C !INTERFACE: SUBROUTINE AIM_AIM2SIOCE( I land_frc, siceFrac, O prcAtm, snowPrc, I bi, bj, myTime, myIter, myThid) C !DESCRIPTION: \bv C *==========================================================* C | S/R AIM_AIM2SIOCE C | o Interface between AIM and thSIce pkg or (coupled) ocean C *==========================================================* C | o compute surface fluxes over ocean (ice-free + ice covered) C | for diagnostics, thsice package and (slab, coupled) ocean C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global variables === C-- size for MITgcm & Physics package : #include "AIM_SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "FFIELDS.h" C-- Physics package #include "AIM_PARAMS.h" #include "com_physcon.h" #include "com_physvar.h" #ifdef ALLOW_THSICE #include "THSICE_SIZE.h" #include "THSICE_PARAMS.h" #include "THSICE_VARS.h" #endif C updated fields (in commom blocks): C if using thSIce: C Qsw(inp) :: SW radiation through the sea-ice down to the ocean (+=up) C Qsw(out) :: SW radiation down to the ocean (ice-free + ice-covered)(+=up) C Qnet(out) :: Net heat flux out of the ocean (ice-free ocean only)(+=up) C and the Ice-Covered contribution will be added in S/R THSICE_STEP_FWD C EmPmR(out) :: Net fresh water flux out off the ocean (ice-free ocean only) C and the Ice-Covered contribution will be added in S/R THSICE_STEP_FWD C sHeating(in/out) :: air - seaice surface heat flux left to melt the ice C icFrwAtm :: Evaporation over sea-ice [kg/m2/s] (>0 if evaporate) C icFlxSW :: net SW heat flux through the ice to the ocean [W/m2] (+=dw) C if not using thSIce: C Qsw(out) :: SW radiation down to the ocean (ice-free + ice-covered)(+=up) C Qnet(out) :: Net heat flux out of the ocean (ice-free + ice-covered)(+=up) C EmPmR(out) :: Net fresh water flux out off the ocean (ice-free + ice-covered) C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C land_frc :: land fraction [0-1] C siceFrac :: sea-ice fraction (relative to full grid-cell) [0-1] C prcAtm :: total precip from the atmosphere [kg/m2/s] C snowPrc :: snow precip over sea-ice [kg/m2/s] C bi,bj :: Tile indices C myTime :: Current time of simulation ( s ) C myIter :: Current iteration number in simulation C myThid :: My Thread Id number _RS land_frc(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy) _RL siceFrac(sNx,sNy) _RL prcAtm (1-OLx:sNx+OLx,1-OLy:sNy+OLy) _RL snowPrc(1-OLx:sNx+OLx,1-OLy:sNy+OLy) INTEGER bi, bj, myIter, myThid _RL myTime CEOP #ifdef ALLOW_AIM C == Local variables == C i,j,I2 :: loop counters C convPrcEvp :: units conversion factor for Precip & Evap: C :: from AIM units (g/m2/s) to model EmPmR units ( kg/m2/s ) _RL convPrcEvp _RL icFrac, opFrac INTEGER i,j,I2 C-- Initialisation : C-- Atmospheric Physics Fluxes C from g/m2/s to kg/m2/s : convPrcEvp = 1. _d -3 DO j=1,sNy DO i=1,sNx IF ( land_frc(i,j,bi,bj).GE.1. _d 0 ) THEN C- Full Land grid-cell: set all fluxes to zero (this has no effect on the C model integration and just put this to get meaningfull diagnostics) prcAtm(i,j) = 0. _d 0 Qnet(i,j,bi,bj) = 0. _d 0 EmPmR(i,j,bi,bj)= 0. _d 0 Qsw(i,j,bi,bj) = 0. _d 0 ELSE I2 = i+(j-1)*sNx C- Total Precip (no distinction between ice-covered / ice-free fraction): prcAtm(i,j) = ( PRECNV(I2,myThid) & + PRECLS(I2,myThid) ) C- Net surface heat flux over ice-free ocean (+=down) C note: with aim_splitSIOsFx=F, ice-free & ice covered contribution are C already merged together and Qnet is the mean heat flux over the grid box. Qnet(i,j,bi,bj) = & SSR(I2,2,myThid) & - SLR(I2,2,myThid) & - SHF(I2,2,myThid) & - EVAP(I2,2,myThid)*ALHC C- E-P over ice-free ocean [m/s]: (same as above is aim_splitSIOsFx=F) EmPmR(i,j,bi,bj) = ( EVAP(I2,2,myThid) & - prcAtm(i,j) ) * convPrcEvp C- Net short wave (ice-free ocean) into the ocean (+=down) Qsw(i,j,bi,bj) = SSR(I2,2,myThid) ENDIF ENDDO ENDDO #ifdef ALLOW_THSICE IF ( useThSIce ) THEN DO j=1,sNy DO i=1,sNx I2 = i+(j-1)*sNx C- Mixed-Layer Ocean: (for thsice slab_ocean and coupler) C NOTE: masking is now applied much earlier, during initialisation c IF (land_frc(i,j,bi,bj).EQ.1. _d 0) hOceMxL(i,j,bi,bj) = 0. C- Evaporation over sea-ice: (for thsice) icFrwAtm(i,j,bi,bj) = EVAP(I2,3,myThid)*convPrcEvp C- short-wave downward heat flux (ice-free ocean + ice-covered): C note: at this point we already called THSICE_IMPL_TEMP to solve for C seaice temp and SW flux through the ice. SW is not modified after, and C can therefore combine the open-ocean & ice-covered ocean SW fluxes. icFrac = iceMask(i,j,bi,bj) opFrac = 1. _d 0 - icFrac Qsw(i,j,bi,bj) = icFrac*icFlxSW(i,j,bi,bj) & + opFrac*Qsw(i,j,bi,bj) ENDDO ENDDO IF ( aim_energPrecip ) THEN C-- Add energy flux related to Precip. (snow, T_rain) over sea-ice DO j=1,sNy DO i=1,sNx IF ( iceMask(i,j,bi,bj).GT.0. _d 0 ) THEN I2 = i+(j-1)*sNx IF ( EnPrec(I2,myThid).GE.0. _d 0 ) THEN C- positive => add to surface heating sHeating(i,j,bi,bj) = sHeating(i,j,bi,bj) & + EnPrec(I2,myThid)*prcAtm(i,j) snowPrc(i,j) = 0. _d 0 ELSE C- negative => make snow snowPrc(i,j) = prcAtm(i,j)*convPrcEvp ENDIF ELSE snowPrc(i,j) = 0. _d 0 ENDIF ENDDO ENDDO ENDIF ELSEIF ( aim_splitSIOsFx ) THEN #else /* ALLOW_THSICE */ IF ( aim_splitSIOsFx ) THEN #endif /* ALLOW_THSICE */ C- aim_splitSIOsFx=T: fluxes over sea-ice (3) & ice-free ocean (2) were C computed separately and here we merge the 2 fractions DO j=1,sNy DO i=1,sNx I2 = i+(j-1)*sNx IF ( siceFrac(i,j) .GT. 0. ) THEN icFrac = siceFrac(i,j)/(1. _d 0 - land_frc(i,j,bi,bj)) opFrac = 1. _d 0 - icFrac C- Net surface heat flux over sea-ice + ice-free ocean (+=down) Qnet(i,j,bi,bj) = Qnet(i,j,bi,bj)*opFrac & + ( SSR(I2,3,myThid) & - SLR(I2,3,myThid) & - SHF(I2,3,myThid) & - EVAP(I2,3,myThid)*ALHC & )*icFrac C- E-P over sea-ice + ice-free ocean [m/s]: EmPmR(i,j,bi,bj) = EmPmR(i,j,bi,bj)*opFrac & + ( EVAP(I2,3,myThid) & - prcAtm(i,j) ) * convPrcEvp * icFrac C- Net short wave (ice-free ocean) into the ocean (+=down) Qsw(i,j,bi,bj) = opFrac*Qsw(i,j,bi,bj) & + icFrac*SSR(I2,3,myThid) ENDIF ENDDO ENDDO C-- end of If useThSIce / elseif aim_splitSIOsFx blocks ENDIF IF ( aim_energPrecip ) THEN C-- Ice free fraction: Add energy flux related to Precip. (snow, T_rain): DO j=1,sNy DO i=1,sNx I2 = i+(j-1)*sNx Qnet(i,j,bi,bj) = Qnet(i,j,bi,bj) & + EnPrec(I2,myThid)*prcAtm(i,j) ENDDO ENDDO ENDIF DO j=1,sNy DO i=1,sNx C- Total Precip : convert units prcAtm(i,j) = prcAtm(i,j) * convPrcEvp C- Oceanic convention: Heat flux are > 0 upward ; reverse sign. Qsw(i,j,bi,bj) = -Qsw(i,j,bi,bj) Qnet(i,j,bi,bj)= -Qnet(i,j,bi,bj) ENDDO ENDDO #endif /* ALLOW_AIM */ RETURN END