/[MITgcm]/MITgcm/model/src/thermodynamics.F
ViewVC logotype

Contents of /MITgcm/model/src/thermodynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.143 - (show annotations) (download)
Tue Feb 19 13:42:19 2013 UTC (11 years, 4 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint64q, checkpoint64p, checkpoint64i, checkpoint64h, checkpoint64k, checkpoint64j, checkpoint64m, checkpoint64l, checkpoint64o, checkpoint64n, checkpoint64e, checkpoint64g, checkpoint64f
Changes since 1.142: +6 -6 lines
Add 3-D array 3rd dimension to argument list of S/R adams_bashforth2/3

1 C $Header: /u/gcmpack/MITgcm/model/src/thermodynamics.F,v 1.142 2012/07/09 19:22:16 jmc Exp $
2 C $Name: $
3
4 #include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6 #ifdef ALLOW_GENERIC_ADVDIFF
7 # include "GAD_OPTIONS.h"
8 #endif
9 #if (defined ALLOW_PTRACERS) && (!defined ALLOW_LONGSTEP)
10 # define DO_PTRACERS_HERE
11 #endif
12
13 #ifdef ALLOW_AUTODIFF_TAMC
14 # ifdef ALLOW_GMREDI
15 # include "GMREDI_OPTIONS.h"
16 # endif
17 # ifdef ALLOW_KPP
18 # include "KPP_OPTIONS.h"
19 # endif
20 #endif /* ALLOW_AUTODIFF_TAMC */
21
22 CBOP
23 C !ROUTINE: THERMODYNAMICS
24 C !INTERFACE:
25 SUBROUTINE THERMODYNAMICS(myTime, myIter, myThid)
26 C !DESCRIPTION: \bv
27 C *==========================================================*
28 C | SUBROUTINE THERMODYNAMICS
29 C | o Controlling routine for the prognostic part of the
30 C | thermo-dynamics.
31 C *===========================================================
32 C | The algorithm...
33 C |
34 C | "Correction Step"
35 C | =================
36 C | Here we update the horizontal velocities with the surface
37 C | pressure such that the resulting flow is either consistent
38 C | with the free-surface evolution or the rigid-lid:
39 C | U[n] = U* + dt x d/dx P
40 C | V[n] = V* + dt x d/dy P
41 C |
42 C | "Calculation of Gs"
43 C | ===================
44 C | This is where all the accelerations and tendencies (ie.
45 C | physics, parameterizations etc...) are calculated
46 C | rho = rho ( theta[n], salt[n] )
47 C | b = b(rho, theta)
48 C | K31 = K31 ( rho )
49 C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
50 C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
51 C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
52 C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
53 C |
54 C | "Time-stepping" or "Prediction"
55 C | ================================
56 C | The models variables are stepped forward with the appropriate
57 C | time-stepping scheme (currently we use Adams-Bashforth II)
58 C | - For momentum, the result is always *only* a "prediction"
59 C | in that the flow may be divergent and will be "corrected"
60 C | later with a surface pressure gradient.
61 C | - Normally for tracers the result is the new field at time
62 C | level [n+1} *BUT* in the case of implicit diffusion the result
63 C | is also *only* a prediction.
64 C | - We denote "predictors" with an asterisk (*).
65 C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
66 C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
67 C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
68 C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
69 C | With implicit diffusion:
70 C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
71 C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
72 C | (1 + dt * K * d_zz) theta[n] = theta*
73 C | (1 + dt * K * d_zz) salt[n] = salt*
74 C |
75 C *==========================================================*
76 C \ev
77
78 C !USES:
79 IMPLICIT NONE
80 C == Global variables ===
81 #include "SIZE.h"
82 #include "EEPARAMS.h"
83 #include "PARAMS.h"
84 #include "RESTART.h"
85 #include "DYNVARS.h"
86 #include "GRID.h"
87 #include "SURFACE.h"
88 #ifdef ALLOW_GENERIC_ADVDIFF
89 # include "GAD.h"
90 # include "GAD_SOM_VARS.h"
91 #endif
92 #ifdef DO_PTRACERS_HERE
93 # include "PTRACERS_SIZE.h"
94 # include "PTRACERS_PARAMS.h"
95 # include "PTRACERS_FIELDS.h"
96 #endif
97 #ifdef ALLOW_TIMEAVE
98 # include "TIMEAVE_STATV.h"
99 #endif
100
101 #ifdef ALLOW_AUTODIFF_TAMC
102 # include "tamc.h"
103 # include "tamc_keys.h"
104 # include "FFIELDS.h"
105 # include "EOS.h"
106 # ifdef ALLOW_KPP
107 # include "KPP.h"
108 # endif
109 # ifdef ALLOW_GMREDI
110 # include "GMREDI.h"
111 # endif
112 # ifdef ALLOW_EBM
113 # include "EBM.h"
114 # endif
115 # ifdef ALLOW_SALT_PLUME
116 # include "SALT_PLUME.h"
117 # endif
118 #endif /* ALLOW_AUTODIFF_TAMC */
119
120 C !INPUT/OUTPUT PARAMETERS:
121 C == Routine arguments ==
122 C myTime - Current time in simulation
123 C myIter - Current iteration number in simulation
124 C myThid - Thread number for this instance of the routine.
125 _RL myTime
126 INTEGER myIter
127 INTEGER myThid
128
129 #ifdef ALLOW_GENERIC_ADVDIFF
130 C !LOCAL VARIABLES:
131 C == Local variables
132 C xA, yA - Per block temporaries holding face areas
133 C uFld, vFld, wFld - Local copy of velocity field (3 components)
134 C uTrans, vTrans, rTrans - Per block temporaries holding flow transport
135 C o uTrans: Zonal transport
136 C o vTrans: Meridional transport
137 C o rTrans: Vertical transport
138 C rTransKp1 o vertical volume transp. at interface k+1
139 C maskUp o maskUp: land/water mask for W points
140 C fVer[STUV] o fVer: Vertical flux term - note fVer
141 C is "pipelined" in the vertical
142 C so we need an fVer for each
143 C variable.
144 C kappaRT, - Total diffusion in vertical at level k, for T and S
145 C kappaRS (background + spatially varying, isopycnal term).
146 C kappaRTr - Total diffusion in vertical at level k,
147 C for each passive Tracer
148 C kappaRk - Total diffusion in vertical, all levels, 1 tracer
149 C useVariableK = T when vertical diffusion is not constant
150 C iMin, iMax - Ranges and sub-block indices on which calculations
151 C jMin, jMax are applied.
152 C bi, bj
153 C k, kup, - Index for layer above and below. kup and kDown
154 C kDown, km1 are switched with layer to be the appropriate
155 C index into fVerTerm.
156 _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
157 _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
158 _RL uFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
159 _RL vFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
160 _RL wFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
161 _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
162 _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
163 _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
164 _RL rTransKp1(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
165 _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
166 _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
167 _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
168 _RL kappaRT (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
169 _RL kappaRS (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
170 #ifdef DO_PTRACERS_HERE
171 _RL fVerP (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2,PTRACERS_num)
172 _RL kappaRTr(1-OLx:sNx+OLx,1-OLy:sNy+OLy,PTRACERS_num)
173 #endif
174 _RL kappaRk (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
175 _RS recip_hFacNew(1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
176 INTEGER iMin, iMax
177 INTEGER jMin, jMax
178 INTEGER bi, bj
179 INTEGER i, j
180 INTEGER k, km1, kup, kDown
181 #ifdef ALLOW_ADAMSBASHFORTH_3
182 INTEGER iterNb, m1, m2
183 _RL tmpFld (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
184 #endif
185 #ifdef ALLOW_TIMEAVE
186 LOGICAL useVariableK
187 #endif
188 #ifdef DO_PTRACERS_HERE
189 INTEGER iTracer, ip
190 #endif
191
192 CEOP
193
194 #ifdef ALLOW_DEBUG
195 IF (debugMode) CALL DEBUG_ENTER('THERMODYNAMICS',myThid)
196 #endif
197
198 #ifdef ALLOW_AUTODIFF_TAMC
199 C-- dummy statement to end declaration part
200 ikey = 1
201 itdkey = 1
202 #endif /* ALLOW_AUTODIFF_TAMC */
203
204 #ifdef ALLOW_AUTODIFF_TAMC
205 C-- HPF directive to help TAMC
206 CHPF$ INDEPENDENT
207 #endif /* ALLOW_AUTODIFF_TAMC */
208
209 C-- Compute correction at the surface for Lin Free Surf.
210 #ifdef ALLOW_AUTODIFF_TAMC
211 TsurfCor = 0. _d 0
212 SsurfCor = 0. _d 0
213 #endif
214 IF (linFSConserveTr) THEN
215 #ifdef ALLOW_AUTODIFF_TAMC
216 CADJ STORE theta,salt,wvel = comlev1, key = ikey_dynamics, byte=isbyte
217 #endif
218 CALL CALC_WSURF_TR(theta,salt,wVel,
219 & myTime,myIter,myThid)
220 ENDIF
221
222 DO bj=myByLo(myThid),myByHi(myThid)
223
224 #ifdef ALLOW_AUTODIFF_TAMC
225 C-- HPF directive to help TAMC
226 CHPF$ INDEPENDENT, NEW (rTrans,fVerT,fVerS
227 CHPF$& ,utrans,vtrans,xA,yA
228 CHPF$& ,kappaRT,kappaRS
229 CHPF$& )
230 # ifdef DO_PTRACERS_HERE
231 CHPF$ INDEPENDENT, NEW (fVerP,kappaRTr)
232 # endif
233 #endif /* ALLOW_AUTODIFF_TAMC */
234
235 DO bi=myBxLo(myThid),myBxHi(myThid)
236
237 #ifdef ALLOW_AUTODIFF_TAMC
238 act1 = bi - myBxLo(myThid)
239 max1 = myBxHi(myThid) - myBxLo(myThid) + 1
240 act2 = bj - myByLo(myThid)
241 max2 = myByHi(myThid) - myByLo(myThid) + 1
242 act3 = myThid - 1
243 max3 = nTx*nTy
244 act4 = ikey_dynamics - 1
245 itdkey = (act1 + 1) + act2*max1
246 & + act3*max1*max2
247 & + act4*max1*max2*max3
248 #endif /* ALLOW_AUTODIFF_TAMC */
249
250 C-- Set up work arrays with valid (i.e. not NaN) values
251 C These inital values do not alter the numerical results. They
252 C just ensure that all memory references are to valid floating
253 C point numbers. This prevents spurious hardware signals due to
254 C uninitialised but inert locations.
255
256 DO j=1-OLy,sNy+OLy
257 DO i=1-OLx,sNx+OLx
258 xA(i,j) = 0. _d 0
259 yA(i,j) = 0. _d 0
260 uTrans(i,j) = 0. _d 0
261 vTrans(i,j) = 0. _d 0
262 rTrans (i,j) = 0. _d 0
263 rTransKp1(i,j) = 0. _d 0
264 fVerT (i,j,1) = 0. _d 0
265 fVerT (i,j,2) = 0. _d 0
266 fVerS (i,j,1) = 0. _d 0
267 fVerS (i,j,2) = 0. _d 0
268 kappaRT(i,j) = 0. _d 0
269 kappaRS(i,j) = 0. _d 0
270 DO k=1,Nr
271 recip_hFacNew(i,j,k) = 0. _d 0
272 ENDDO
273 ENDDO
274 ENDDO
275
276 DO k=1,Nr
277 DO j=1-OLy,sNy+OLy
278 DO i=1-OLx,sNx+OLx
279 C This is currently also used by IVDC and Diagnostics
280 kappaRk(i,j,k) = 0. _d 0
281 C- tracer tendency needs to be set to zero (moved here from gad_calc_rhs):
282 gT(i,j,k,bi,bj) = 0. _d 0
283 gS(i,j,k,bi,bj) = 0. _d 0
284 ENDDO
285 ENDDO
286 ENDDO
287
288 #ifdef DO_PTRACERS_HERE
289 IF ( usePTRACERS ) THEN
290 DO ip=1,PTRACERS_num
291 DO j=1-OLy,sNy+OLy
292 DO i=1-OLx,sNx+OLx
293 fVerP (i,j,1,ip) = 0. _d 0
294 fVerP (i,j,2,ip) = 0. _d 0
295 kappaRTr(i,j,ip) = 0. _d 0
296 ENDDO
297 ENDDO
298 ENDDO
299 C- set tracer tendency to zero:
300 DO iTracer=1,PTRACERS_num
301 DO k=1,Nr
302 DO j=1-OLy,sNy+OLy
303 DO i=1-OLx,sNx+OLx
304 gPTr(i,j,k,bi,bj,itracer) = 0. _d 0
305 ENDDO
306 ENDDO
307 ENDDO
308 ENDDO
309 ENDIF
310 #endif
311
312 #ifdef ALLOW_ADAMSBASHFORTH_3
313 C- Apply AB on T,S :
314 iterNb = myIter
315 IF (staggerTimeStep) iterNb = myIter - 1
316 m1 = 1 + MOD(iterNb+1,2)
317 m2 = 1 + MOD( iterNb ,2)
318 C compute T^n+1/2 (stored in gtNm) extrapolating T forward in time
319 IF ( AdamsBashforth_T ) CALL ADAMS_BASHFORTH3(
320 I bi, bj, 0, Nr,
321 U theta, gtNm, tmpFld,
322 I tempStartAB, iterNb, myThid )
323 C compute S^n+1/2 (stored in gsNm) extrapolating S forward in time
324 IF ( AdamsBashforth_S ) CALL ADAMS_BASHFORTH3(
325 I bi, bj, 0, Nr,
326 U salt, gsNm, tmpFld,
327 I saltStartAB, iterNb, myThid )
328 #endif /* ALLOW_ADAMSBASHFORTH_3 */
329
330 c iMin = 1-OLx
331 c iMax = sNx+OLx
332 c jMin = 1-OLy
333 c jMax = sNy+OLy
334
335 #ifdef ALLOW_AUTODIFF_TAMC
336 cph avoids recomputation of integrate_for_w
337 CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
338 #endif /* ALLOW_AUTODIFF_TAMC */
339
340 C-- Attention: by defining "SINGLE_LAYER_MODE" in CPP_OPTIONS.h
341 C-- MOST of THERMODYNAMICS will be disabled
342 #ifndef SINGLE_LAYER_MODE
343
344 #ifdef ALLOW_AUTODIFF_TAMC
345 CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
346 CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
347 CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
348 CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
349 # if ((defined ALLOW_DEPTH_CONTROL) || (defined NONLIN_FRSURF))
350 # ifndef ALLOW_ADAMSBASHFORTH_3
351 CADJ STORE gtnm1(:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
352 CADJ STORE gsnm1(:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
353 # endif
354 # endif
355 #endif /* ALLOW_AUTODIFF_TAMC */
356
357 #ifndef DISABLE_MULTIDIM_ADVECTION
358 C-- Some advection schemes are better calculated using a multi-dimensional
359 C method in the absence of any other terms and, if used, is done here.
360 C
361 C The CPP flag DISABLE_MULTIDIM_ADVECTION is currently unset in GAD_OPTIONS.h
362 C The default is to use multi-dimensinal advection for non-linear advection
363 C schemes. However, for the sake of efficiency of the adjoint it is necessary
364 C to be able to exclude this scheme to avoid excessive storage and
365 C recomputation. It *is* differentiable, if you need it.
366 C Edit GAD_OPTIONS.h and #define DISABLE_MULTIDIM_ADVECTION to
367 C disable this section of code.
368 #ifdef GAD_ALLOW_TS_SOM_ADV
369 # ifdef ALLOW_AUTODIFF_TAMC
370 CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
371 CADJ STORE salt(:,:,:,bi,bj) = comlev1_bibj, key=itdkey, byte=isbyte
372 CADJ STORE som_t = comlev1_bibj, key=itdkey, byte=isbyte
373 CADJ STORE som_s = comlev1_bibj, key=itdkey, byte=isbyte
374 # ifdef ALLOW_ADAMSBASHFORTH_3
375 CADJ STORE gtnm(:,:,:,bi,bj,1) = comlev1_bibj, key=itdkey, byte=isbyte
376 CADJ STORE gtnm(:,:,:,bi,bj,2) = comlev1_bibj, key=itdkey, byte=isbyte
377 CADJ STORE gsnm(:,:,:,bi,bj,1) = comlev1_bibj, key=itdkey, byte=isbyte
378 CADJ STORE gsnm(:,:,:,bi,bj,2) = comlev1_bibj, key=itdkey, byte=isbyte
379 # endif
380 # endif
381 IF ( tempSOM_Advection ) THEN
382 #ifdef ALLOW_DEBUG
383 IF (debugMode) CALL DEBUG_CALL('GAD_SOM_ADVECT',myThid)
384 #endif
385 CALL GAD_SOM_ADVECT(
386 I tempImplVertAdv, tempAdvScheme, tempVertAdvScheme,
387 I GAD_TEMPERATURE, dTtracerLev,
388 I uVel, vVel, wVel, theta,
389 U som_T,
390 O gT,
391 I bi,bj,myTime,myIter,myThid)
392 ELSEIF (tempMultiDimAdvec) THEN
393 #else /* GAD_ALLOW_TS_SOM_ADV */
394 IF (tempMultiDimAdvec) THEN
395 #endif /* GAD_ALLOW_TS_SOM_ADV */
396 #ifdef ALLOW_DEBUG
397 IF (debugMode) CALL DEBUG_CALL('GAD_ADVECTION',myThid)
398 #endif
399 CALL GAD_ADVECTION(
400 I tempImplVertAdv, tempAdvScheme, tempVertAdvScheme,
401 I GAD_TEMPERATURE, dTtracerLev,
402 I uVel, vVel, wVel, theta,
403 O gT,
404 I bi,bj,myTime,myIter,myThid)
405 ENDIF
406 #ifdef GAD_ALLOW_TS_SOM_ADV
407 IF ( saltSOM_Advection ) THEN
408 #ifdef ALLOW_DEBUG
409 IF (debugMode) CALL DEBUG_CALL('GAD_SOM_ADVECT',myThid)
410 #endif
411 CALL GAD_SOM_ADVECT(
412 I saltImplVertAdv, saltAdvScheme, saltVertAdvScheme,
413 I GAD_SALINITY, dTtracerLev,
414 I uVel, vVel, wVel, salt,
415 U som_S,
416 O gS,
417 I bi,bj,myTime,myIter,myThid)
418 ELSEIF (saltMultiDimAdvec) THEN
419 #else /* GAD_ALLOW_TS_SOM_ADV */
420 IF (saltMultiDimAdvec) THEN
421 #endif /* GAD_ALLOW_TS_SOM_ADV */
422 #ifdef ALLOW_DEBUG
423 IF (debugMode) CALL DEBUG_CALL('GAD_ADVECTION',myThid)
424 #endif
425 CALL GAD_ADVECTION(
426 I saltImplVertAdv, saltAdvScheme, saltVertAdvScheme,
427 I GAD_SALINITY, dTtracerLev,
428 I uVel, vVel, wVel, salt,
429 O gS,
430 I bi,bj,myTime,myIter,myThid)
431 ENDIF
432
433 C Since passive tracers are configurable separately from T,S we
434 C call the multi-dimensional method for PTRACERS regardless
435 C of whether multiDimAdvection is set or not.
436 #ifdef DO_PTRACERS_HERE
437 IF ( usePTRACERS ) THEN
438 #ifdef ALLOW_DEBUG
439 IF (debugMode) CALL DEBUG_CALL('PTRACERS_ADVECTION',myThid)
440 #endif
441 CALL PTRACERS_ADVECTION( bi,bj,myTime,myIter,myThid )
442 ENDIF
443 #endif /* DO_PTRACERS_HERE */
444 #endif /* DISABLE_MULTIDIM_ADVECTION */
445
446 #ifdef ALLOW_DEBUG
447 IF (debugMode)
448 & CALL DEBUG_MSG('ENTERING DOWNWARD K LOOP',myThid)
449 #endif
450
451 #ifdef ALLOW_AUTODIFF_TAMC
452 # ifdef ALLOW_SALT_PLUME
453 CADJ STORE saltPlumeFlux(:,:,bi,bj) =
454 CADJ & comlev1_bibj, key=itdkey,kind = isbyte
455 CADJ STORE saltPlumeDepth(:,:,bi,bj) =
456 CADJ & comlev1_bibj, key=itdkey,kind = isbyte
457 # endif
458 #endif /* ALLOW_AUTODIFF_TAMC */
459
460 C-- Start of thermodynamics loop
461 DO k=Nr,1,-1
462 #ifdef ALLOW_AUTODIFF_TAMC
463 C? Patrick Is this formula correct?
464 cph Yes, but I rewrote it.
465 cph Also, the kappaR? need the index and subscript k!
466 kkey = (itdkey-1)*Nr + k
467 #endif /* ALLOW_AUTODIFF_TAMC */
468
469 C-- km1 Points to level above k (=k-1)
470 C-- kup Cycles through 1,2 to point to layer above
471 C-- kDown Cycles through 2,1 to point to current layer
472
473 km1 = MAX(1,k-1)
474 kup = 1+MOD(k+1,2)
475 kDown= 1+MOD(k,2)
476
477 iMin = 1-OLx
478 iMax = sNx+OLx
479 jMin = 1-OLy
480 jMax = sNy+OLy
481
482 IF (k.EQ.Nr) THEN
483 DO j=1-OLy,sNy+OLy
484 DO i=1-OLx,sNx+OLx
485 rTransKp1(i,j) = 0. _d 0
486 ENDDO
487 ENDDO
488 ELSE
489 DO j=1-OLy,sNy+OLy
490 DO i=1-OLx,sNx+OLx
491 rTransKp1(i,j) = rTrans(i,j)
492 ENDDO
493 ENDDO
494 ENDIF
495 #ifdef ALLOW_AUTODIFF_TAMC
496 CADJ STORE rTransKp1(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
497 #endif
498
499 C-- Get temporary terms used by tendency routines :
500 C- Calculate horizontal "volume transport" through tracer cell face
501 C anelastic: uTrans,vTrans are scaled by rhoFacC (~ mass transport)
502 CALL CALC_COMMON_FACTORS (
503 I uVel, vVel,
504 O uFld, vFld, uTrans, vTrans, xA, yA,
505 I k,bi,bj, myThid )
506
507 C- Calculate vertical "volume transport" through tracer cell face
508 IF (k.EQ.1) THEN
509 C- Surface interface :
510 DO j=1-OLy,sNy+OLy
511 DO i=1-OLx,sNx+OLx
512 wFld(i,j) = 0. _d 0
513 maskUp(i,j) = 0. _d 0
514 rTrans(i,j) = 0. _d 0
515 ENDDO
516 ENDDO
517 ELSE
518 C- Interior interface :
519 C anelastic: rTrans is scaled by rhoFacF (~ mass transport)
520 DO j=1-OLy,sNy+OLy
521 DO i=1-OLx,sNx+OLx
522 wFld(i,j) = wVel(i,j,k,bi,bj)
523 maskUp(i,j) = maskC(i,j,k-1,bi,bj)*maskC(i,j,k,bi,bj)
524 rTrans(i,j) = wFld(i,j)*rA(i,j,bi,bj)*maskUp(i,j)
525 & *deepFac2F(k)*rhoFacF(k)
526 ENDDO
527 ENDDO
528 ENDIF
529
530 #ifdef ALLOW_GMREDI
531 C-- Residual transp = Bolus transp + Eulerian transp
532 IF (useGMRedi) THEN
533 CALL GMREDI_CALC_UVFLOW(
534 U uFld, vFld, uTrans, vTrans,
535 I k, bi, bj, myThid )
536 IF (K.GE.2) THEN
537 CALL GMREDI_CALC_WFLOW(
538 U wFld, rTrans,
539 I k, bi, bj, myThid )
540 ENDIF
541 ENDIF
542 # ifdef ALLOW_AUTODIFF_TAMC
543 CADJ STORE rTrans(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
544 CADJ STORE wfld(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
545 # ifdef GM_BOLUS_ADVEC
546 CADJ STORE ufld(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
547 CADJ STORE vfld(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
548 CADJ STORE uTrans(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
549 CADJ STORE vTrans(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
550 # endif
551 # endif /* ALLOW_AUTODIFF_TAMC */
552 #endif /* ALLOW_GMREDI */
553
554 #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
555 C-- Calculate the total vertical diffusivity
556 IF ( .NOT.implicitDiffusion ) THEN
557 CALL CALC_DIFFUSIVITY(
558 I bi,bj,iMin,iMax,jMin,jMax,k,
559 I maskUp,
560 O kappaRT,kappaRS,
561 I myThid)
562 ENDIF
563 # ifdef ALLOW_AUTODIFF_TAMC
564 CADJ STORE kappaRT(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
565 CADJ STORE kappaRS(:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
566 # endif /* ALLOW_AUTODIFF_TAMC */
567 #endif
568
569 iMin = 1-OLx+2
570 iMax = sNx+OLx-1
571 jMin = 1-OLy+2
572 jMax = sNy+OLy-1
573
574 C-- Calculate active tracer tendencies (gT,gS,...)
575 C and step forward storing result in gT, gS, etc.
576 C--
577 # ifdef ALLOW_AUTODIFF_TAMC
578 # if ((defined NONLIN_FRSURF) || (defined ALLOW_DEPTH_CONTROL)) && (defined ALLOW_GMREDI)
579 # ifdef GM_NON_UNITY_DIAGONAL
580 CADJ STORE kux(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
581 CADJ STORE kvy(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
582 # endif
583 # ifdef GM_EXTRA_DIAGONAL
584 CADJ STORE kuz(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
585 CADJ STORE kvz(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
586 # endif
587 # endif
588 # endif /* ALLOW_AUTODIFF_TAMC */
589 C
590 #ifdef ALLOW_AUTODIFF_TAMC
591 # if (defined NONLIN_FRSURF) || (defined ALLOW_DEPTH_CONTROL)
592 cph-test
593 CADJ STORE uFld(:,:), vFld(:,:), wFld(:,:)
594 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
595 CADJ STORE uTrans(:,:), vTrans(:,:)
596 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
597 CADJ STORE xA(:,:), yA(:,:)
598 CADJ & = comlev1_bibj_k, key=kkey, byte=isbyte
599 # ifdef ALLOW_ADAMSBASHFORTH_3
600 CADJ STORE gT(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
601 CADJ STORE gS(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
602 CADJ STORE gSnm(:,:,k,bi,bj,1)= comlev1_bibj_k, key=kkey, byte=isbyte
603 CADJ STORE gSnm(:,:,k,bi,bj,2)= comlev1_bibj_k, key=kkey, byte=isbyte
604 CADJ STORE gTnm(:,:,k,bi,bj,1)= comlev1_bibj_k, key=kkey, byte=isbyte
605 CADJ STORE gTnm(:,:,k,bi,bj,2)= comlev1_bibj_k, key=kkey, byte=isbyte
606 CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
607 CADJ STORE salt(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
608 CADJ STORE fvert(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
609 CADJ STORE fvers(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
610 # endif /* ALLOW_ADAMSBASHFORTH_3 */
611 # endif /* NONLIN_FRSURF */
612 #endif /* ALLOW_AUTODIFF_TAMC */
613 C
614 IF ( tempStepping ) THEN
615 #ifdef ALLOW_AUTODIFF_TAMC
616 # ifndef ALLOW_ADAMSBASHFORTH_3
617 CADJ STORE gTnm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
618 # else
619 # ifndef NONLIN_FRSURF
620 CADJ STORE gTnm(:,:,k,bi,bj,1)= comlev1_bibj_k, key=kkey, byte=isbyte
621 CADJ STORE gTnm(:,:,k,bi,bj,2)= comlev1_bibj_k, key=kkey, byte=isbyte
622 # endif /* ndef NONLIN_FRSURF */
623 # endif /* ndef ALLOW_ADAMSBASHFORTH_3 */
624 # if (defined NONLIN_FRSURF) || (defined ALLOW_DEPTH_CONTROL)
625 CADJ STORE gt(:,:,:,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
626 CADJ STORE fvert(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
627 # endif
628 #endif /* ALLOW_AUTODIFF_TAMC */
629 CALL CALC_GT(
630 I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,
631 I xA, yA, maskUp, uFld, vFld, wFld,
632 I uTrans, vTrans, rTrans, rTransKp1,
633 I kappaRT,
634 U fVerT,
635 I myTime,myIter,myThid)
636 #ifdef ALLOW_ADAMSBASHFORTH_3
637 IF ( AdamsBashforth_T ) THEN
638 CALL TIMESTEP_TRACER(
639 I bi, bj, k, dTtracerLev(k),
640 I gtNm(1-OLx,1-OLy,1,1,1,m2),
641 U gT,
642 I myIter, myThid )
643 ELSE
644 #endif
645 CALL TIMESTEP_TRACER(
646 I bi, bj, k, dTtracerLev(k),
647 I theta,
648 U gT,
649 I myIter, myThid )
650 #ifdef ALLOW_ADAMSBASHFORTH_3
651 ENDIF
652 #endif
653 ENDIF
654
655 #ifdef ALLOW_AUTODIFF_TAMC
656 # if (defined NONLIN_FRSURF) && (defined ALLOW_ADAMSBASHFORTH_3)
657 CADJ STORE gTnm(:,:,k,bi,bj,1)= comlev1_bibj_k, key=kkey, byte=isbyte
658 CADJ STORE gTnm(:,:,k,bi,bj,2)= comlev1_bibj_k, key=kkey, byte=isbyte
659 CADJ STORE fvert(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
660 # endif
661 #endif
662
663 IF ( saltStepping ) THEN
664 #ifdef ALLOW_AUTODIFF_TAMC
665 # ifndef ALLOW_ADAMSBASHFORTH_3
666 CADJ STORE gSnm1(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
667 # else
668 # ifndef NONLIN_FRSURF
669 CADJ STORE gSnm(:,:,k,bi,bj,1)= comlev1_bibj_k, key=kkey, byte=isbyte
670 CADJ STORE gSnm(:,:,k,bi,bj,2)= comlev1_bibj_k, key=kkey, byte=isbyte
671 # endif /* ndef NONLIN_FRSURF */
672 # endif /* ndef ALLOW_ADAMSBASHFORTH_3 */
673 # if (defined NONLIN_FRSURF) || (defined ALLOW_DEPTH_CONTROL)
674 CADJ STORE gs(:,:,:,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
675 CADJ STORE fvers(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
676 # endif
677 #endif /* ALLOW_AUTODIFF_TAMC */
678
679 CALL CALC_GS(
680 I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,
681 I xA, yA, maskUp, uFld, vFld, wFld,
682 I uTrans, vTrans, rTrans, rTransKp1,
683 I kappaRS,
684 U fVerS,
685 I myTime,myIter,myThid)
686 #ifdef ALLOW_ADAMSBASHFORTH_3
687 IF ( AdamsBashforth_S ) THEN
688 CALL TIMESTEP_TRACER(
689 I bi, bj, k, dTtracerLev(k),
690 I gsNm(1-OLx,1-OLy,1,1,1,m2),
691 U gS,
692 I myIter, myThid )
693 ELSE
694 #endif
695 CALL TIMESTEP_TRACER(
696 I bi, bj, k, dTtracerLev(k),
697 I salt,
698 U gS,
699 I myIter, myThid )
700 #ifdef ALLOW_ADAMSBASHFORTH_3
701 ENDIF
702 #endif
703 ENDIF
704
705 #ifdef DO_PTRACERS_HERE
706 IF ( usePTRACERS ) THEN
707 IF ( .NOT.implicitDiffusion ) THEN
708 CALL PTRACERS_CALC_DIFF(
709 I bi,bj,iMin,iMax,jMin,jMax,k,
710 I maskUp,
711 O kappaRTr,
712 I myThid)
713 ENDIF
714 # ifdef ALLOW_AUTODIFF_TAMC
715 CADJ STORE kappaRTr(:,:,:) = comlev1_bibj_k, key=kkey, byte=isbyte
716 # endif /* ALLOW_AUTODIFF_TAMC */
717 CALL PTRACERS_INTEGRATE(
718 I bi,bj,k,
719 I xA, yA, maskUp, uFld, vFld, wFld,
720 I uTrans, vTrans, rTrans, rTransKp1,
721 I kappaRTr,
722 U fVerP,
723 I myTime,myIter,myThid)
724 ENDIF
725 #endif /* DO_PTRACERS_HERE */
726
727 C-- Freeze water
728 C this bit of code is left here for backward compatibility.
729 C freezing at surface level has been moved to DO_OCEANIC_PHYS
730 IF ( useOldFreezing .AND. .NOT. useSEAICE
731 & .AND. .NOT.(useThSIce.AND.k.EQ.1) ) THEN
732 #ifdef ALLOW_AUTODIFF_TAMC
733 CADJ STORE gT(:,:,k,bi,bj) = comlev1_bibj_k
734 CADJ & , key = kkey, byte = isbyte
735 #endif /* ALLOW_AUTODIFF_TAMC */
736 CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid )
737 ENDIF
738
739 C-- end of thermodynamic k loop (Nr:1)
740 ENDDO
741
742 C-- Compute new reciprocal hFac for implicit calculation
743 #ifdef NONLIN_FRSURF
744 IF ( nonlinFreeSurf.GT.0 ) THEN
745 IF ( select_rStar.GT.0 ) THEN
746 # ifndef DISABLE_RSTAR_CODE
747 DO k=1,Nr
748 DO j=1-OLy,sNy+OLy
749 DO i=1-OLx,sNx+OLx
750 recip_hFacNew(i,j,k) = recip_hFacC(i,j,k,bi,bj)
751 & / rStarExpC(i,j,bi,bj)
752 ENDDO
753 ENDDO
754 ENDDO
755 # endif /* DISABLE_RSTAR_CODE */
756 ELSEIF ( selectSigmaCoord.NE.0 ) THEN
757 # ifndef DISABLE_SIGMA_CODE
758 DO k=1,Nr
759 DO j=1-OLy,sNy+OLy
760 DO i=1-OLx,sNx+OLx
761 recip_hFacNew(i,j,k) = recip_hFacC(i,j,k,bi,bj)
762 & /( 1. _d 0 + dEtaHdt(i,j,bi,bj)*deltaTFreeSurf
763 & *dBHybSigF(k)*recip_drF(k)
764 & *recip_hFacC(i,j,k,bi,bj)
765 & )
766 ENDDO
767 ENDDO
768 ENDDO
769 # endif /* DISABLE_RSTAR_CODE */
770 ELSE
771 DO k=1,Nr
772 DO j=1-OLy,sNy+OLy
773 DO i=1-OLx,sNx+OLx
774 IF ( k.EQ.kSurfC(i,j,bi,bj) ) THEN
775 recip_hFacNew(i,j,k) = 1. _d 0 / hFac_surfC(i,j,bi,bj)
776 ELSE
777 recip_hFacNew(i,j,k) = recip_hFacC(i,j,k,bi,bj)
778 ENDIF
779 ENDDO
780 ENDDO
781 ENDDO
782 ENDIF
783 ELSE
784 #endif /* NONLIN_FRSURF */
785 DO k=1,Nr
786 DO j=1-OLy,sNy+OLy
787 DO i=1-OLx,sNx+OLx
788 recip_hFacNew(i,j,k) = _recip_hFacC(i,j,k,bi,bj)
789 ENDDO
790 ENDDO
791 ENDDO
792 #ifdef NONLIN_FRSURF
793 ENDIF
794 #endif /* NONLIN_FRSURF */
795
796 #ifdef ALLOW_DOWN_SLOPE
797 IF ( tempStepping .AND. useDOWN_SLOPE ) THEN
798 IF ( usingPCoords ) THEN
799 CALL DWNSLP_APPLY(
800 I GAD_TEMPERATURE, bi, bj, kSurfC,
801 I recip_drF, recip_hFacC, recip_rA,
802 I dTtracerLev,
803 I theta,
804 U gT,
805 I myTime, myIter, myThid )
806 ELSE
807 CALL DWNSLP_APPLY(
808 I GAD_TEMPERATURE, bi, bj, kLowC,
809 I recip_drF, recip_hFacC, recip_rA,
810 I dTtracerLev,
811 I theta,
812 U gT,
813 I myTime, myIter, myThid )
814 ENDIF
815 ENDIF
816 IF ( saltStepping .AND. useDOWN_SLOPE ) THEN
817 IF ( usingPCoords ) THEN
818 CALL DWNSLP_APPLY(
819 I GAD_SALINITY, bi, bj, kSurfC,
820 I recip_drF, recip_hFacC, recip_rA,
821 I dTtracerLev,
822 I salt,
823 U gS,
824 I myTime, myIter, myThid )
825 ELSE
826 CALL DWNSLP_APPLY(
827 I GAD_SALINITY, bi, bj, kLowC,
828 I recip_drF, recip_hFacC, recip_rA,
829 I dTtracerLev,
830 I salt,
831 U gS,
832 I myTime, myIter, myThid )
833 ENDIF
834 ENDIF
835 #ifdef DO_PTRACERS_HERE
836 IF ( usePTRACERS .AND. useDOWN_SLOPE ) THEN
837 CALL PTRACERS_DWNSLP_APPLY(
838 I bi, bj, myTime, myIter, myThid )
839 ENDIF
840 #endif /* DO_PTRACERS_HERE */
841 #endif /* ALLOW_DOWN_SLOPE */
842
843 C All explicit advection/diffusion/sources should now be
844 C done. The updated tracer field is in gPtr. Accumalate
845 C explicit tendency and also reset gPtr to initial tracer
846 C field for implicit matrix calculation
847
848 #ifdef ALLOW_MATRIX
849 IF (useMATRIX)
850 & CALL MATRIX_STORE_TENDENCY_EXP(bi,bj, myTime,myIter,myThid)
851 #endif
852
853 iMin = 1
854 iMax = sNx
855 jMin = 1
856 jMax = sNy
857
858 C-- Implicit vertical advection & diffusion
859 IF ( tempStepping .AND. implicitDiffusion ) THEN
860 CALL CALC_3D_DIFFUSIVITY(
861 I bi,bj,iMin,iMax,jMin,jMax,
862 I GAD_TEMPERATURE, useGMredi, useKPP,
863 O kappaRk,
864 I myThid)
865 ENDIF
866 #ifdef INCLUDE_IMPLVERTADV_CODE
867 IF ( tempImplVertAdv ) THEN
868 #ifdef ALLOW_AUTODIFF_TAMC
869 CADJ STORE kappaRk(:,:,:) = comlev1_bibj , key=itdkey, byte=isbyte
870 CADJ STORE gT(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
871 CADJ STORE wvel(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
872 CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
873 CADJ STORE recip_hFacNew(:,:,:) = comlev1_bibj , key=itdkey, byte=isbyte
874 #endif /* ALLOW_AUTODIFF_TAMC */
875 CALL GAD_IMPLICIT_R(
876 I tempImplVertAdv, tempVertAdvScheme, GAD_TEMPERATURE,
877 I dTtracerLev,
878 I kappaRk, recip_hFacNew, wVel, theta,
879 U gT,
880 I bi, bj, myTime, myIter, myThid )
881 ELSEIF ( tempStepping .AND. implicitDiffusion ) THEN
882 #else /* INCLUDE_IMPLVERTADV_CODE */
883 IF ( tempStepping .AND. implicitDiffusion ) THEN
884 #endif /* INCLUDE_IMPLVERTADV_CODE */
885 #ifdef ALLOW_AUTODIFF_TAMC
886 CADJ STORE kappaRk(:,:,:) = comlev1_bibj , key=itdkey, byte=isbyte
887 CADJ STORE gT(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
888 #endif /* ALLOW_AUTODIFF_TAMC */
889 CALL IMPLDIFF(
890 I bi, bj, iMin, iMax, jMin, jMax,
891 I GAD_TEMPERATURE, kappaRk, recip_hFacNew,
892 U gT,
893 I myThid )
894 ENDIF
895
896 #ifdef ALLOW_TIMEAVE
897 useVariableK = useKPP .OR. usePP81 .OR. useMY82 .OR. useGGL90
898 & .OR. useGMredi .OR. ivdc_kappa.NE.0.
899 IF (taveFreq.GT.0. .AND. useVariableK ) THEN
900 IF (implicitDiffusion) THEN
901 CALL TIMEAVE_CUMUL_DIF_1T(TdiffRtave, gT, kappaRk,
902 I Nr, 3, deltaTClock, bi, bj, myThid)
903 c ELSE
904 c CALL TIMEAVE_CUMUL_DIF_1T(TdiffRtave, theta, kappaRT,
905 c I Nr, 3, deltaTClock, bi, bj, myThid)
906 ENDIF
907 ENDIF
908 #endif /* ALLOW_TIMEAVE */
909
910 IF ( saltStepping .AND. implicitDiffusion ) THEN
911 CALL CALC_3D_DIFFUSIVITY(
912 I bi,bj,iMin,iMax,jMin,jMax,
913 I GAD_SALINITY, useGMredi, useKPP,
914 O kappaRk,
915 I myThid)
916 ENDIF
917
918 #ifdef INCLUDE_IMPLVERTADV_CODE
919 IF ( saltImplVertAdv ) THEN
920 #ifdef ALLOW_AUTODIFF_TAMC
921 CADJ STORE kappaRk(:,:,:) = comlev1_bibj , key=itdkey, byte=isbyte
922 CADJ STORE gS(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
923 CADJ STORE wvel(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
924 CADJ STORE salt(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
925 CADJ STORE recip_hFacNew(:,:,:) = comlev1_bibj , key=itdkey, byte=isbyte
926 #endif /* ALLOW_AUTODIFF_TAMC */
927 CALL GAD_IMPLICIT_R(
928 I saltImplVertAdv, saltVertAdvScheme, GAD_SALINITY,
929 I dTtracerLev,
930 I kappaRk, recip_hFacNew, wVel, salt,
931 U gS,
932 I bi, bj, myTime, myIter, myThid )
933 ELSEIF ( saltStepping .AND. implicitDiffusion ) THEN
934 #else /* INCLUDE_IMPLVERTADV_CODE */
935 IF ( saltStepping .AND. implicitDiffusion ) THEN
936 #endif /* INCLUDE_IMPLVERTADV_CODE */
937 #ifdef ALLOW_AUTODIFF_TAMC
938 CADJ STORE kappaRk(:,:,:) = comlev1_bibj , key=itdkey, byte=isbyte
939 CADJ STORE gS(:,:,:,bi,bj) = comlev1_bibj , key=itdkey, byte=isbyte
940 #endif /* ALLOW_AUTODIFF_TAMC */
941 CALL IMPLDIFF(
942 I bi, bj, iMin, iMax, jMin, jMax,
943 I GAD_SALINITY, kappaRk, recip_hFacNew,
944 U gS,
945 I myThid )
946 ENDIF
947
948 #ifdef DO_PTRACERS_HERE
949 IF ( usePTRACERS ) THEN
950 C-- Vertical advection/diffusion (implicit) for passive tracers
951 C Also apply open boundary conditions for each passive tracer
952 CALL PTRACERS_IMPLICIT(
953 U kappaRk,
954 I recip_hFacNew,
955 I bi, bj, myTime, myIter, myThid )
956 ENDIF
957 #endif /* DO_PTRACERS_HERE */
958
959 #ifdef ALLOW_OBCS
960 C-- Apply open boundary conditions
961 IF ( useOBCS ) THEN
962 CALL OBCS_APPLY_TS( bi, bj, 0, gT, gS, myThid )
963 ENDIF
964 #endif /* ALLOW_OBCS */
965
966 #endif /* SINGLE_LAYER_MODE */
967
968 C-- end bi,bj loops.
969 ENDDO
970 ENDDO
971
972 #ifdef ALLOW_DEBUG
973 IF ( debugLevel.GE.debLevD ) THEN
974 CALL DEBUG_STATS_RL(Nr,uVel,'Uvel (THERMODYNAMICS)',myThid)
975 CALL DEBUG_STATS_RL(Nr,vVel,'Vvel (THERMODYNAMICS)',myThid)
976 CALL DEBUG_STATS_RL(Nr,wVel,'Wvel (THERMODYNAMICS)',myThid)
977 CALL DEBUG_STATS_RL(Nr,theta,'Theta (THERMODYNAMICS)',myThid)
978 CALL DEBUG_STATS_RL(Nr,salt,'Salt (THERMODYNAMICS)',myThid)
979 CALL DEBUG_STATS_RL(Nr,gT,'Gt (THERMODYNAMICS)',myThid)
980 CALL DEBUG_STATS_RL(Nr,gS,'Gs (THERMODYNAMICS)',myThid)
981 #ifndef ALLOW_ADAMSBASHFORTH_3
982 CALL DEBUG_STATS_RL(Nr,gtNm1,'GtNm1 (THERMODYNAMICS)',myThid)
983 CALL DEBUG_STATS_RL(Nr,gsNm1,'GsNm1 (THERMODYNAMICS)',myThid)
984 #endif
985 #ifdef DO_PTRACERS_HERE
986 IF ( usePTRACERS ) THEN
987 CALL PTRACERS_DEBUG(myThid)
988 ENDIF
989 #endif /* DO_PTRACERS_HERE */
990 ENDIF
991 #endif /* ALLOW_DEBUG */
992
993 #ifdef ALLOW_DEBUG
994 IF (debugMode) CALL DEBUG_LEAVE('THERMODYNAMICS',myThid)
995 #endif
996
997 #endif /* ALLOW_GENERIC_ADVDIFF */
998
999 RETURN
1000 END

  ViewVC Help
Powered by ViewVC 1.1.22