/[MITgcm]/MITgcm/model/src/thermodynamics.F
ViewVC logotype

Annotation of /MITgcm/model/src/thermodynamics.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.10 - (hide annotations) (download)
Thu Sep 27 18:06:43 2001 UTC (22 years, 8 months ago) by adcroft
Branch: MAIN
Changes since 1.9: +3 -3 lines
Deleted apostrophies in comments: "Isn't" breaks cpp...

1 adcroft 1.10 C $Header: /u/gcmpack/models/MITgcmUV/model/src/thermodynamics.F,v 1.9 2001/09/26 18:09:16 cnh Exp $
2 adcroft 1.1 C $Name: $
3    
4     #include "CPP_OPTIONS.h"
5    
6 cnh 1.9 CBOP
7     C !ROUTINE: THERMODYNAMICS
8     C !INTERFACE:
9 adcroft 1.1 SUBROUTINE THERMODYNAMICS(myTime, myIter, myThid)
10 cnh 1.9 C !DESCRIPTION: \bv
11     C *==========================================================*
12     C | SUBROUTINE THERMODYNAMICS
13     C | o Controlling routine for the prognostic part of the
14     C | thermo-dynamics.
15     C *===========================================================
16     C | The algorithm...
17     C |
18     C | "Correction Step"
19     C | =================
20     C | Here we update the horizontal velocities with the surface
21     C | pressure such that the resulting flow is either consistent
22     C | with the free-surface evolution or the rigid-lid:
23     C | U[n] = U* + dt x d/dx P
24     C | V[n] = V* + dt x d/dy P
25     C |
26     C | "Calculation of Gs"
27     C | ===================
28     C | This is where all the accelerations and tendencies (ie.
29     C | physics, parameterizations etc...) are calculated
30     C | rho = rho ( theta[n], salt[n] )
31     C | b = b(rho, theta)
32     C | K31 = K31 ( rho )
33     C | Gu[n] = Gu( u[n], v[n], wVel, b, ... )
34     C | Gv[n] = Gv( u[n], v[n], wVel, b, ... )
35     C | Gt[n] = Gt( theta[n], u[n], v[n], wVel, K31, ... )
36     C | Gs[n] = Gs( salt[n], u[n], v[n], wVel, K31, ... )
37     C |
38     C | "Time-stepping" or "Prediction"
39     C | ================================
40     C | The models variables are stepped forward with the appropriate
41     C | time-stepping scheme (currently we use Adams-Bashforth II)
42     C | - For momentum, the result is always *only* a "prediction"
43     C | in that the flow may be divergent and will be "corrected"
44     C | later with a surface pressure gradient.
45     C | - Normally for tracers the result is the new field at time
46     C | level [n+1} *BUT* in the case of implicit diffusion the result
47     C | is also *only* a prediction.
48     C | - We denote "predictors" with an asterisk (*).
49     C | U* = U[n] + dt x ( 3/2 Gu[n] - 1/2 Gu[n-1] )
50     C | V* = V[n] + dt x ( 3/2 Gv[n] - 1/2 Gv[n-1] )
51     C | theta[n+1] = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
52     C | salt[n+1] = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
53     C | With implicit diffusion:
54     C | theta* = theta[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
55     C | salt* = salt[n] + dt x ( 3/2 Gt[n] - 1/2 atG[n-1] )
56     C | (1 + dt * K * d_zz) theta[n] = theta*
57     C | (1 + dt * K * d_zz) salt[n] = salt*
58     C |
59     C *==========================================================*
60     C \ev
61    
62     C !USES:
63 adcroft 1.1 IMPLICIT NONE
64     C == Global variables ===
65     #include "SIZE.h"
66     #include "EEPARAMS.h"
67     #include "PARAMS.h"
68     #include "DYNVARS.h"
69     #include "GRID.h"
70 adcroft 1.4 #include "GAD.h"
71 adcroft 1.1 #ifdef ALLOW_PASSIVE_TRACER
72     #include "TR1.h"
73     #endif
74     #ifdef ALLOW_AUTODIFF_TAMC
75     # include "tamc.h"
76     # include "tamc_keys.h"
77     # include "FFIELDS.h"
78     # ifdef ALLOW_KPP
79     # include "KPP.h"
80     # endif
81     # ifdef ALLOW_GMREDI
82     # include "GMREDI.h"
83     # endif
84     #endif /* ALLOW_AUTODIFF_TAMC */
85     #ifdef ALLOW_TIMEAVE
86     #include "TIMEAVE_STATV.h"
87     #endif
88    
89 cnh 1.9 C !INPUT/OUTPUT PARAMETERS:
90 adcroft 1.1 C == Routine arguments ==
91     C myTime - Current time in simulation
92     C myIter - Current iteration number in simulation
93     C myThid - Thread number for this instance of the routine.
94     _RL myTime
95     INTEGER myIter
96     INTEGER myThid
97    
98 cnh 1.9 C !LOCAL VARIABLES:
99 adcroft 1.1 C == Local variables
100     C xA, yA - Per block temporaries holding face areas
101     C uTrans, vTrans, rTrans - Per block temporaries holding flow
102     C transport
103     C o uTrans: Zonal transport
104     C o vTrans: Meridional transport
105     C o rTrans: Vertical transport
106     C maskUp o maskUp: land/water mask for W points
107     C fVer[STUV] o fVer: Vertical flux term - note fVer
108     C is "pipelined" in the vertical
109     C so we need an fVer for each
110     C variable.
111     C rhoK, rhoKM1 - Density at current level, and level above
112     C phiHyd - Hydrostatic part of the potential phiHydi.
113     C In z coords phiHydiHyd is the hydrostatic
114     C Potential (=pressure/rho0) anomaly
115     C In p coords phiHydiHyd is the geopotential
116     C surface height anomaly.
117     C phiSurfX, - gradient of Surface potentiel (Pressure/rho, ocean)
118     C phiSurfY or geopotentiel (atmos) in X and Y direction
119     C KappaRT, - Total diffusion in vertical for T and S.
120     C KappaRS (background + spatially varying, isopycnal term).
121     C iMin, iMax - Ranges and sub-block indices on which calculations
122     C jMin, jMax are applied.
123     C bi, bj
124     C k, kup, - Index for layer above and below. kup and kDown
125     C kDown, km1 are switched with layer to be the appropriate
126     C index into fVerTerm.
127     _RS xA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
128     _RS yA (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
129     _RL uTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
130     _RL vTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
131     _RL rTrans (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
132     _RS maskUp (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
133     _RL fVerT (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
134     _RL fVerS (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
135     _RL fVerTr1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy,2)
136     _RL phiHyd (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
137     _RL rhokm1 (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
138     _RL rhok (1-OLx:sNx+OLx,1-OLy:sNy+OLy)
139     _RL phiSurfX(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
140     _RL phiSurfY(1-OLx:sNx+OLx,1-OLy:sNy+OLy)
141     _RL KappaRT (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
142     _RL KappaRS (1-Olx:sNx+Olx,1-Oly:sNy+Oly,Nr)
143     _RL sigmaX (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
144     _RL sigmaY (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
145     _RL sigmaR (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
146 cnh 1.9 C This is currently used by IVDC and Diagnostics
147 adcroft 1.1 _RL ConvectCount (1-OLx:sNx+OLx,1-OLy:sNy+OLy,Nr)
148     INTEGER iMin, iMax
149     INTEGER jMin, jMax
150     INTEGER bi, bj
151     INTEGER i, j
152     INTEGER k, km1, kup, kDown
153    
154     Cjmc : add for phiHyd output <- but not working if multi tile per CPU
155     c CHARACTER*(MAX_LEN_MBUF) suff
156     c LOGICAL DIFFERENT_MULTIPLE
157     c EXTERNAL DIFFERENT_MULTIPLE
158     Cjmc(end)
159 cnh 1.9 CEOP
160 adcroft 1.1
161     #ifdef ALLOW_AUTODIFF_TAMC
162     C-- dummy statement to end declaration part
163     ikey = 1
164     #endif /* ALLOW_AUTODIFF_TAMC */
165    
166     C-- Set up work arrays with valid (i.e. not NaN) values
167     C These inital values do not alter the numerical results. They
168     C just ensure that all memory references are to valid floating
169     C point numbers. This prevents spurious hardware signals due to
170     C uninitialised but inert locations.
171     DO j=1-OLy,sNy+OLy
172     DO i=1-OLx,sNx+OLx
173     xA(i,j) = 0. _d 0
174     yA(i,j) = 0. _d 0
175     uTrans(i,j) = 0. _d 0
176     vTrans(i,j) = 0. _d 0
177     DO k=1,Nr
178     phiHyd(i,j,k) = 0. _d 0
179     sigmaX(i,j,k) = 0. _d 0
180     sigmaY(i,j,k) = 0. _d 0
181     sigmaR(i,j,k) = 0. _d 0
182     ENDDO
183     rhoKM1 (i,j) = 0. _d 0
184     rhok (i,j) = 0. _d 0
185     phiSurfX(i,j) = 0. _d 0
186     phiSurfY(i,j) = 0. _d 0
187     ENDDO
188     ENDDO
189    
190    
191     #ifdef ALLOW_AUTODIFF_TAMC
192     C-- HPF directive to help TAMC
193     CHPF$ INDEPENDENT
194     #endif /* ALLOW_AUTODIFF_TAMC */
195    
196     DO bj=myByLo(myThid),myByHi(myThid)
197    
198     #ifdef ALLOW_AUTODIFF_TAMC
199     C-- HPF directive to help TAMC
200 heimbach 1.2 CHPF$ INDEPENDENT, NEW (rTrans,fVerT,fVerS
201 adcroft 1.1 CHPF$& ,phiHyd,utrans,vtrans,xA,yA
202 heimbach 1.2 CHPF$& ,KappaRT,KappaRS
203 adcroft 1.1 CHPF$& )
204     #endif /* ALLOW_AUTODIFF_TAMC */
205    
206     DO bi=myBxLo(myThid),myBxHi(myThid)
207    
208     #ifdef ALLOW_AUTODIFF_TAMC
209     act1 = bi - myBxLo(myThid)
210     max1 = myBxHi(myThid) - myBxLo(myThid) + 1
211    
212     act2 = bj - myByLo(myThid)
213     max2 = myByHi(myThid) - myByLo(myThid) + 1
214    
215     act3 = myThid - 1
216     max3 = nTx*nTy
217    
218     act4 = ikey_dynamics - 1
219    
220     ikey = (act1 + 1) + act2*max1
221     & + act3*max1*max2
222     & + act4*max1*max2*max3
223     #endif /* ALLOW_AUTODIFF_TAMC */
224    
225     C-- Set up work arrays that need valid initial values
226     DO j=1-OLy,sNy+OLy
227     DO i=1-OLx,sNx+OLx
228     rTrans (i,j) = 0. _d 0
229     fVerT (i,j,1) = 0. _d 0
230     fVerT (i,j,2) = 0. _d 0
231     fVerS (i,j,1) = 0. _d 0
232     fVerS (i,j,2) = 0. _d 0
233     fVerTr1(i,j,1) = 0. _d 0
234     fVerTr1(i,j,2) = 0. _d 0
235     ENDDO
236     ENDDO
237    
238     DO k=1,Nr
239     DO j=1-OLy,sNy+OLy
240     DO i=1-OLx,sNx+OLx
241     C This is currently also used by IVDC and Diagnostics
242     ConvectCount(i,j,k) = 0.
243     KappaRT(i,j,k) = 0. _d 0
244     KappaRS(i,j,k) = 0. _d 0
245 heimbach 1.5 #ifdef ALLOW_AUTODIFF_TAMC
246     gT(i,j,k,bi,bj) = 0. _d 0
247     gS(i,j,k,bi,bj) = 0. _d 0
248     #ifdef ALLOW_PASSIVE_TRACER
249     gTr1(i,j,k,bi,bj) = 0. _d 0
250     #endif
251     #endif
252 adcroft 1.1 ENDDO
253     ENDDO
254     ENDDO
255    
256     iMin = 1-OLx+1
257     iMax = sNx+OLx
258     jMin = 1-OLy+1
259     jMax = sNy+OLy
260    
261    
262     #ifdef ALLOW_AUTODIFF_TAMC
263     CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
264     CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
265     #endif /* ALLOW_AUTODIFF_TAMC */
266    
267     C-- Start of diagnostic loop
268     DO k=Nr,1,-1
269    
270     #ifdef ALLOW_AUTODIFF_TAMC
271     C? Patrick, is this formula correct now that we change the loop range?
272     C? Do we still need this?
273     cph kkey formula corrected.
274     cph Needed for rhok, rhokm1, in the case useGMREDI.
275     kkey = (ikey-1)*Nr + k
276     CADJ STORE rhokm1(:,:) = comlev1_bibj_k , key=kkey, byte=isbyte
277     CADJ STORE rhok (:,:) = comlev1_bibj_k , key=kkey, byte=isbyte
278     #endif /* ALLOW_AUTODIFF_TAMC */
279    
280     C-- Integrate continuity vertically for vertical velocity
281     CALL INTEGRATE_FOR_W(
282     I bi, bj, k, uVel, vVel,
283     O wVel,
284     I myThid )
285    
286     #ifdef ALLOW_OBCS
287     #ifdef ALLOW_NONHYDROSTATIC
288     C-- Apply OBC to W if in N-H mode
289     IF (useOBCS.AND.nonHydrostatic) THEN
290     CALL OBCS_APPLY_W( bi, bj, k, wVel, myThid )
291     ENDIF
292     #endif /* ALLOW_NONHYDROSTATIC */
293     #endif /* ALLOW_OBCS */
294    
295     C-- Calculate gradients of potential density for isoneutral
296     C slope terms (e.g. GM/Redi tensor or IVDC diffusivity)
297     c IF ( k.GT.1 .AND. (useGMRedi.OR.ivdc_kappa.NE.0.) ) THEN
298     IF ( useGMRedi .OR. (k.GT.1 .AND. ivdc_kappa.NE.0.) ) THEN
299     #ifdef ALLOW_AUTODIFF_TAMC
300     CADJ STORE theta(:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
301     CADJ STORE salt (:,:,k,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
302     #endif /* ALLOW_AUTODIFF_TAMC */
303     CALL FIND_RHO(
304     I bi, bj, iMin, iMax, jMin, jMax, k, k, eosType,
305     I theta, salt,
306     O rhoK,
307     I myThid )
308     IF (k.GT.1) THEN
309     #ifdef ALLOW_AUTODIFF_TAMC
310     CADJ STORE theta(:,:,k-1,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
311     CADJ STORE salt (:,:,k-1,bi,bj) = comlev1_bibj_k, key=kkey, byte=isbyte
312     #endif /* ALLOW_AUTODIFF_TAMC */
313     CALL FIND_RHO(
314     I bi, bj, iMin, iMax, jMin, jMax, k-1, k, eosType,
315     I theta, salt,
316     O rhoKm1,
317     I myThid )
318     ENDIF
319     CALL GRAD_SIGMA(
320     I bi, bj, iMin, iMax, jMin, jMax, k,
321     I rhoK, rhoKm1, rhoK,
322     O sigmaX, sigmaY, sigmaR,
323     I myThid )
324     ENDIF
325    
326     C-- Implicit Vertical Diffusion for Convection
327     c ==> should use sigmaR !!!
328     IF (k.GT.1 .AND. ivdc_kappa.NE.0.) THEN
329     CALL CALC_IVDC(
330     I bi, bj, iMin, iMax, jMin, jMax, k,
331     I rhoKm1, rhoK,
332     U ConvectCount, KappaRT, KappaRS,
333     I myTime, myIter, myThid)
334     ENDIF
335    
336     C-- end of diagnostic k loop (Nr:1)
337     ENDDO
338    
339     #ifdef ALLOW_AUTODIFF_TAMC
340     cph avoids recomputation of integrate_for_w
341     CADJ STORE wvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
342     #endif /* ALLOW_AUTODIFF_TAMC */
343    
344     #ifdef ALLOW_OBCS
345     C-- Calculate future values on open boundaries
346     IF (useOBCS) THEN
347     CALL OBCS_CALC( bi, bj, myTime+deltaT,
348     I uVel, vVel, wVel, theta, salt,
349     I myThid )
350     ENDIF
351     #endif /* ALLOW_OBCS */
352    
353     C-- Determines forcing terms based on external fields
354     C relaxation terms, etc.
355     CALL EXTERNAL_FORCING_SURF(
356     I bi, bj, iMin, iMax, jMin, jMax,
357     I myThid )
358     #ifdef ALLOW_AUTODIFF_TAMC
359     cph needed for KPP
360     CADJ STORE surfacetendencyU(:,:,bi,bj)
361     CADJ & = comlev1_bibj, key=ikey, byte=isbyte
362     CADJ STORE surfacetendencyV(:,:,bi,bj)
363     CADJ & = comlev1_bibj, key=ikey, byte=isbyte
364     CADJ STORE surfacetendencyS(:,:,bi,bj)
365     CADJ & = comlev1_bibj, key=ikey, byte=isbyte
366     CADJ STORE surfacetendencyT(:,:,bi,bj)
367     CADJ & = comlev1_bibj, key=ikey, byte=isbyte
368     #endif /* ALLOW_AUTODIFF_TAMC */
369    
370     #ifdef ALLOW_GMREDI
371    
372     #ifdef ALLOW_AUTODIFF_TAMC
373     CADJ STORE sigmaX(:,:,:) = comlev1, key=ikey, byte=isbyte
374     CADJ STORE sigmaY(:,:,:) = comlev1, key=ikey, byte=isbyte
375     CADJ STORE sigmaR(:,:,:) = comlev1, key=ikey, byte=isbyte
376     #endif /* ALLOW_AUTODIFF_TAMC */
377     C-- Calculate iso-neutral slopes for the GM/Redi parameterisation
378     IF (useGMRedi) THEN
379     DO k=1,Nr
380     CALL GMREDI_CALC_TENSOR(
381     I bi, bj, iMin, iMax, jMin, jMax, k,
382     I sigmaX, sigmaY, sigmaR,
383     I myThid )
384     ENDDO
385     #ifdef ALLOW_AUTODIFF_TAMC
386     ELSE
387     DO k=1, Nr
388     CALL GMREDI_CALC_TENSOR_DUMMY(
389     I bi, bj, iMin, iMax, jMin, jMax, k,
390     I sigmaX, sigmaY, sigmaR,
391     I myThid )
392     ENDDO
393     #endif /* ALLOW_AUTODIFF_TAMC */
394     ENDIF
395    
396     #ifdef ALLOW_AUTODIFF_TAMC
397     CADJ STORE Kwx(:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
398     CADJ STORE Kwy(:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
399     CADJ STORE Kwz(:,:,:,bi,bj) = comlev1_bibj, key=ikey, byte=isbyte
400     #endif /* ALLOW_AUTODIFF_TAMC */
401    
402     #endif /* ALLOW_GMREDI */
403    
404     #ifdef ALLOW_KPP
405     C-- Compute KPP mixing coefficients
406     IF (useKPP) THEN
407     CALL KPP_CALC(
408     I bi, bj, myTime, myThid )
409     #ifdef ALLOW_AUTODIFF_TAMC
410     ELSE
411     CALL KPP_CALC_DUMMY(
412     I bi, bj, myTime, myThid )
413     #endif /* ALLOW_AUTODIFF_TAMC */
414     ENDIF
415    
416     #ifdef ALLOW_AUTODIFF_TAMC
417     CADJ STORE KPPghat (:,:,:,bi,bj)
418     CADJ & , KPPviscAz (:,:,:,bi,bj)
419     CADJ & , KPPdiffKzT(:,:,:,bi,bj)
420     CADJ & , KPPdiffKzS(:,:,:,bi,bj)
421     CADJ & , KPPfrac (:,: ,bi,bj)
422     CADJ & = comlev1_bibj, key=ikey, byte=isbyte
423     #endif /* ALLOW_AUTODIFF_TAMC */
424    
425     #endif /* ALLOW_KPP */
426    
427     #ifdef ALLOW_AUTODIFF_TAMC
428     CADJ STORE KappaRT(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte
429     CADJ STORE KappaRS(:,:,:) = comlev1_bibj, key = ikey, byte = isbyte
430     CADJ STORE theta(:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
431     CADJ STORE salt (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
432     CADJ STORE uvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
433     CADJ STORE vvel (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
434     #ifdef ALLOW_PASSIVE_TRACER
435     CADJ STORE tr1 (:,:,:,bi,bj) = comlev1_bibj, key = ikey, byte = isbyte
436     #endif
437     #endif /* ALLOW_AUTODIFF_TAMC */
438    
439     #ifdef ALLOW_AIM
440     C AIM - atmospheric intermediate model, physics package code.
441     C note(jmc) : phiHyd=0 at this point but is not really used in Molteni Physics
442     IF ( useAIM ) THEN
443     CALL TIMER_START('AIM_DO_ATMOS_PHYS [DYNAMICS]', myThid)
444     CALL AIM_DO_ATMOS_PHYSICS( phiHyd, bi, bj, myTime, myThid )
445     CALL TIMER_STOP ('AIM_DO_ATMOS_PHYS [DYNAMICS]', myThid)
446     ENDIF
447     #endif /* ALLOW_AIM */
448 adcroft 1.4
449     C-- Some advection schemes are better calculated using a multi-dimensional
450     C method in the absence of any other terms and, if used, is done here.
451 adcroft 1.6 IF (multiDimAdvection) THEN
452     IF (tempStepping .AND.
453     & tempAdvScheme.NE.ENUM_CENTERED_2ND .AND.
454     & tempAdvScheme.NE.ENUM_UPWIND_3RD .AND.
455     & tempAdvScheme.NE.ENUM_CENTERED_4TH )
456     & CALL GAD_ADVECTION(bi,bj,tempAdvScheme,GAD_TEMPERATURE,theta,
457     U gT,
458     I myTime,myIter,myThid)
459     IF (saltStepping .AND.
460     & saltAdvScheme.NE.ENUM_CENTERED_2ND .AND.
461     & saltAdvScheme.NE.ENUM_UPWIND_3RD .AND.
462     & saltAdvScheme.NE.ENUM_CENTERED_4TH )
463     & CALL GAD_ADVECTION(bi,bj,saltAdvScheme,GAD_SALINITY,salt,
464     U gS,
465     I myTime,myIter,myThid)
466     ENDIF
467 adcroft 1.1
468    
469     C-- Start of thermodynamics loop
470     DO k=Nr,1,-1
471     #ifdef ALLOW_AUTODIFF_TAMC
472     C? Patrick Is this formula correct?
473     cph Yes, but I rewrote it.
474     cph Also, the KappaR? need the index and subscript k!
475     kkey = (ikey-1)*Nr + k
476     #endif /* ALLOW_AUTODIFF_TAMC */
477    
478     C-- km1 Points to level above k (=k-1)
479     C-- kup Cycles through 1,2 to point to layer above
480     C-- kDown Cycles through 2,1 to point to current layer
481    
482     km1 = MAX(1,k-1)
483     kup = 1+MOD(k+1,2)
484     kDown= 1+MOD(k,2)
485    
486     iMin = 1-OLx
487     iMax = sNx+OLx
488     jMin = 1-OLy
489     jMax = sNy+OLy
490    
491     C-- Get temporary terms used by tendency routines
492     CALL CALC_COMMON_FACTORS (
493     I bi,bj,iMin,iMax,jMin,jMax,k,
494     O xA,yA,uTrans,vTrans,rTrans,maskUp,
495     I myThid)
496    
497     #ifdef ALLOW_AUTODIFF_TAMC
498     CADJ STORE KappaRT(:,:,k) = comlev1_bibj_k, key=kkey, byte=isbyte
499     CADJ STORE KappaRS(:,:,k) = comlev1_bibj_k, key=kkey, byte=isbyte
500     #endif /* ALLOW_AUTODIFF_TAMC */
501    
502     #ifdef INCLUDE_CALC_DIFFUSIVITY_CALL
503     C-- Calculate the total vertical diffusivity
504     CALL CALC_DIFFUSIVITY(
505     I bi,bj,iMin,iMax,jMin,jMax,k,
506     I maskUp,
507 heimbach 1.2 O KappaRT,KappaRS,
508 adcroft 1.1 I myThid)
509     #endif
510    
511     iMin = 1-OLx+2
512     iMax = sNx+OLx-1
513     jMin = 1-OLy+2
514     jMax = sNy+OLy-1
515    
516     C-- Calculate active tracer tendencies (gT,gS,...)
517     C and step forward storing result in gTnm1, gSnm1, etc.
518     IF ( tempStepping ) THEN
519     CALL CALC_GT(
520     I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,
521     I xA,yA,uTrans,vTrans,rTrans,maskUp,
522     I KappaRT,
523     U fVerT,
524 adcroft 1.7 I myTime,myIter,myThid)
525 adcroft 1.1 CALL TIMESTEP_TRACER(
526 adcroft 1.3 I bi,bj,iMin,iMax,jMin,jMax,k,tempAdvScheme,
527 adcroft 1.1 I theta, gT,
528     U gTnm1,
529     I myIter, myThid)
530     ENDIF
531     IF ( saltStepping ) THEN
532     CALL CALC_GS(
533     I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,
534     I xA,yA,uTrans,vTrans,rTrans,maskUp,
535     I KappaRS,
536     U fVerS,
537 adcroft 1.7 I myTime,myIter,myThid)
538 adcroft 1.1 CALL TIMESTEP_TRACER(
539 adcroft 1.3 I bi,bj,iMin,iMax,jMin,jMax,k,saltAdvScheme,
540 adcroft 1.1 I salt, gS,
541     U gSnm1,
542     I myIter, myThid)
543     ENDIF
544     #ifdef ALLOW_PASSIVE_TRACER
545     IF ( tr1Stepping ) THEN
546     CALL CALC_GTR1(
547     I bi,bj,iMin,iMax,jMin,jMax, k,km1,kup,kDown,
548     I xA,yA,uTrans,vTrans,rTrans,maskUp,
549     I KappaRT,
550     U fVerTr1,
551 heimbach 1.8 I myTime,myIter,myThid)
552 adcroft 1.1 CALL TIMESTEP_TRACER(
553 adcroft 1.3 I bi,bj,iMin,iMax,jMin,jMax,k,tracerAdvScheme,
554 adcroft 1.1 I Tr1, gTr1,
555     U gTr1NM1,
556 heimbach 1.8 I myIter,myThid)
557 adcroft 1.1 ENDIF
558     #endif
559    
560     #ifdef ALLOW_OBCS
561     C-- Apply open boundary conditions
562     IF (useOBCS) THEN
563 adcroft 1.7 CALL OBCS_APPLY_TS( bi, bj, k, gT, gS, myThid )
564 adcroft 1.1 END IF
565     #endif /* ALLOW_OBCS */
566    
567     C-- Freeze water
568     IF (allowFreezing) THEN
569     #ifdef ALLOW_AUTODIFF_TAMC
570     CADJ STORE gTNm1(:,:,k,bi,bj) = comlev1_bibj_k
571     CADJ & , key = kkey, byte = isbyte
572     #endif /* ALLOW_AUTODIFF_TAMC */
573     CALL FREEZE( bi, bj, iMin, iMax, jMin, jMax, k, myThid )
574     END IF
575    
576     C-- end of thermodynamic k loop (Nr:1)
577     ENDDO
578    
579    
580     #ifdef ALLOW_AUTODIFF_TAMC
581     C? Patrick? What about this one?
582 adcroft 1.10 cph Keys iikey and idkey dont seem to be needed
583 adcroft 1.1 cph since storing occurs on different tape for each
584     cph impldiff call anyways.
585 adcroft 1.10 cph Thus, common block comlev1_impl isnt needed either.
586 adcroft 1.1 cph Storing below needed in the case useGMREDI.
587     iikey = (ikey-1)*maximpl
588     #endif /* ALLOW_AUTODIFF_TAMC */
589    
590     C-- Implicit diffusion
591     IF (implicitDiffusion) THEN
592    
593     IF (tempStepping) THEN
594     #ifdef ALLOW_AUTODIFF_TAMC
595     idkey = iikey + 1
596     CADJ STORE gTNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
597     #endif /* ALLOW_AUTODIFF_TAMC */
598     CALL IMPLDIFF(
599     I bi, bj, iMin, iMax, jMin, jMax,
600     I deltaTtracer, KappaRT, recip_HFacC,
601 adcroft 1.7 U gT,
602 adcroft 1.1 I myThid )
603     ENDIF
604    
605     IF (saltStepping) THEN
606     #ifdef ALLOW_AUTODIFF_TAMC
607     idkey = iikey + 2
608     CADJ STORE gSNm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
609     #endif /* ALLOW_AUTODIFF_TAMC */
610     CALL IMPLDIFF(
611     I bi, bj, iMin, iMax, jMin, jMax,
612     I deltaTtracer, KappaRS, recip_HFacC,
613 adcroft 1.7 U gS,
614 adcroft 1.1 I myThid )
615     ENDIF
616    
617     #ifdef ALLOW_PASSIVE_TRACER
618     IF (tr1Stepping) THEN
619     #ifdef ALLOW_AUTODIFF_TAMC
620     CADJ STORE gTr1Nm1(:,:,:,bi,bj) = comlev1_bibj , key=ikey, byte=isbyte
621     #endif /* ALLOW_AUTODIFF_TAMC */
622     CALL IMPLDIFF(
623     I bi, bj, iMin, iMax, jMin, jMax,
624     I deltaTtracer, KappaRT, recip_HFacC,
625 adcroft 1.7 U gTr1,
626 adcroft 1.1 I myThid )
627     ENDIF
628     #endif
629    
630     #ifdef ALLOW_OBCS
631     C-- Apply open boundary conditions
632     IF (useOBCS) THEN
633     DO K=1,Nr
634 adcroft 1.7 CALL OBCS_APPLY_TS( bi, bj, k, gT, gS, myThid )
635 adcroft 1.1 ENDDO
636     END IF
637     #endif /* ALLOW_OBCS */
638    
639     C-- End If implicitDiffusion
640     ENDIF
641    
642     Ccs-
643     ENDDO
644     ENDDO
645    
646     #ifdef ALLOW_AIM
647     IF ( useAIM ) THEN
648     CALL AIM_AIM2DYN_EXCHANGES( myTime, myThid )
649     ENDIF
650 adcroft 1.7 _EXCH_XYZ_R8(gT,myThid)
651     _EXCH_XYZ_R8(gS,myThid)
652 adcroft 1.1 #else
653     IF (staggerTimeStep.AND.useCubedSphereExchange) THEN
654 adcroft 1.7 _EXCH_XYZ_R8(gT,myThid)
655     _EXCH_XYZ_R8(gS,myThid)
656 adcroft 1.1 ENDIF
657     #endif /* ALLOW_AIM */
658    
659     RETURN
660     END

  ViewVC Help
Powered by ViewVC 1.1.22