/[MITgcm]/MITgcm/model/src/solve_for_pressure.F
ViewVC logotype

Contents of /MITgcm/model/src/solve_for_pressure.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.22 - (show annotations) (download)
Tue May 29 14:01:37 2001 UTC (23 years ago) by adcroft
Branch: MAIN
Changes since 1.21: +12 -17 lines
Merge from branch pre38:
 o essential mods for cubed sphere
 o debugged atmosphere, dynamcis + physics (aim)
 o new packages (mom_vecinv, mom_fluxform, ...)

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/solve_for_pressure.F,v 1.19.2.4 2001/05/16 21:05:10 jmc Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 CStartOfInterface
7 SUBROUTINE SOLVE_FOR_PRESSURE( myThid )
8 C /==========================================================\
9 C | SUBROUTINE SOLVE_FOR_PRESSURE |
10 C | o Controls inversion of two and/or three-dimensional |
11 C | elliptic problems for the pressure field. |
12 C \==========================================================/
13 IMPLICIT NONE
14
15 C == Global variables
16 #include "SIZE.h"
17 #include "EEPARAMS.h"
18 #include "PARAMS.h"
19 #include "DYNVARS.h"
20 #include "GRID.h"
21 #include "SURFACE.h"
22 #ifdef ALLOW_NONHYDROSTATIC
23 #include "CG3D.h"
24 #include "GW.h"
25 #endif
26 #ifdef ALLOW_OBCS
27 #include "OBCS.h"
28 #endif
29 #include "SOLVE_FOR_PRESSURE.h"
30
31 C == Routine arguments ==
32 C myThid - Number of this instance of SOLVE_FOR_PRESSURE
33 INTEGER myThid
34 CEndOfInterface
35
36 C == Local variables ==
37 INTEGER i,j,k,bi,bj
38 _RS uf(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
39 _RS vf(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
40 _RL firstResidual,lastResidual
41 INTEGER numIters
42
43 C-- Save previous solution & Initialise Vector solution and source term :
44 DO bj=myByLo(myThid),myByHi(myThid)
45 DO bi=myBxLo(myThid),myBxHi(myThid)
46 DO j=1-OLy,sNy+OLy
47 DO i=1-OLx,sNx+OLx
48 etaNm1(i,j,bi,bj) = etaN(i,j,bi,bj)
49 cg2d_x(i,j,bi,bj) = Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
50 cg2d_b(i,j,bi,bj) = 0.
51 #ifdef USE_NATURAL_BCS
52 & + freeSurfFac*_rA(i,j,bi,bj)*
53 & EmPmR(I,J,bi,bj)/deltaTMom
54 #endif
55 ENDDO
56 ENDDO
57 ENDDO
58 ENDDO
59
60 DO bj=myByLo(myThid),myByHi(myThid)
61 DO bi=myBxLo(myThid),myBxHi(myThid)
62 DO K=Nr,1,-1
63 DO j=1,sNy+1
64 DO i=1,sNx+1
65 uf(i,j) = _dyG(i,j,bi,bj)
66 & *drF(k)*_hFacW(i,j,k,bi,bj)
67 vf(i,j) = _dxG(i,j,bi,bj)
68 & *drF(k)*_hFacS(i,j,k,bi,bj)
69 ENDDO
70 ENDDO
71 CALL CALC_DIV_GHAT(
72 I bi,bj,1,sNx,1,sNy,K,
73 I uf,vf,
74 U cg2d_b,
75 I myThid)
76 ENDDO
77 ENDDO
78 ENDDO
79
80 C-- Add source term arising from w=d/dt (p_s + p_nh)
81 DO bj=myByLo(myThid),myByHi(myThid)
82 DO bi=myBxLo(myThid),myBxHi(myThid)
83 #ifdef ALLOW_NONHYDROSTATIC
84 DO j=1,sNy
85 DO i=1,sNx
86 cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj)
87 & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTMom
88 & *( etaN(i,j,bi,bj)
89 & +cg3d_x(i,j,1,bi,bj)*horiVertRatio/gravity )
90 cg3d_b(i,j,1,bi,bj) = cg3d_b(i,j,1,bi,bj)
91 & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTMom
92 & *( etaN(i,j,bi,bj)
93 & +cg3d_x(i,j,1,bi,bj)*horiVertRatio/gravity )
94 C-jmc
95 c & -freeSurfFac*_rA(i,j,bi,bj)*recip_Bo(i,j,bi,bj)
96 c & *( cg2d_x(i,j,bi,bj) + cg3d_x(i,j,1,bi,bj) )
97 c & /deltaTMom/deltaTMom
98 C-jmc
99 ENDDO
100 ENDDO
101 #else
102 DO j=1,sNy
103 DO i=1,sNx
104 cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj)
105 & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTMom
106 & * etaN(i,j,bi,bj)
107 ENDDO
108 ENDDO
109 #endif
110
111 #ifdef ALLOW_OBCS
112 IF (useOBCS) THEN
113 DO i=1,sNx
114 C Northern boundary
115 IF (OB_Jn(I,bi,bj).NE.0) THEN
116 cg2d_b(I,OB_Jn(I,bi,bj),bi,bj)=0.
117 ENDIF
118 C Southern boundary
119 IF (OB_Js(I,bi,bj).NE.0) THEN
120 cg2d_b(I,OB_Js(I,bi,bj),bi,bj)=0.
121 ENDIF
122 ENDDO
123 DO j=1,sNy
124 C Eastern boundary
125 IF (OB_Ie(J,bi,bj).NE.0) THEN
126 cg2d_b(OB_Ie(J,bi,bj),J,bi,bj)=0.
127 ENDIF
128 C Western boundary
129 IF (OB_Iw(J,bi,bj).NE.0) THEN
130 cg2d_b(OB_Iw(J,bi,bj),J,bi,bj)=0.
131 ENDIF
132 ENDDO
133 ENDIF
134 #endif
135 ENDDO
136 ENDDO
137
138
139 C-- Find the surface pressure using a two-dimensional conjugate
140 C-- gradient solver.
141 C see CG2D.h for the interface to this routine.
142 firstResidual=0.
143 lastResidual=0.
144 numIters=cg2dMaxIters
145 CALL CG2D(
146 U cg2d_b,
147 U cg2d_x,
148 O firstResidual,
149 O lastResidual,
150 U numIters,
151 I myThid )
152 _EXCH_XY_R8(cg2d_x, myThid )
153
154 _BEGIN_MASTER( myThid )
155 WRITE(*,'(A,I6,1PE30.14)') ' CG2D iters, err = ',
156 & 0, firstResidual
157 WRITE(*,'(A,I6,1PE30.14)') ' CG2D iters, err = ',
158 & numIters, lastResidual
159 _END_MASTER( )
160
161 C-- Transfert the 2D-solution to "etaN" :
162 DO bj=myByLo(myThid),myByHi(myThid)
163 DO bi=myBxLo(myThid),myBxHi(myThid)
164 DO j=1-OLy,sNy+OLy
165 DO i=1-OLx,sNx+OLx
166 etaN(i,j,bi,bj) = recip_Bo(i,j,bi,bj)*cg2d_x(i,j,bi,bj)
167 ENDDO
168 ENDDO
169 ENDDO
170 ENDDO
171
172 #ifdef ALLOW_NONHYDROSTATIC
173 IF ( nonHydrostatic ) THEN
174
175 C-- Solve for a three-dimensional pressure term (NH or IGW or both ).
176 C see CG3D.h for the interface to this routine.
177 DO bj=myByLo(myThid),myByHi(myThid)
178 DO bi=myBxLo(myThid),myBxHi(myThid)
179 DO j=1,sNy+1
180 DO i=1,sNx+1
181 uf(i,j)=-_recip_dxC(i,j,bi,bj)*
182 & (cg2d_x(i,j,bi,bj)-cg2d_x(i-1,j,bi,bj))
183 vf(i,j)=-_recip_dyC(i,j,bi,bj)*
184 & (cg2d_x(i,j,bi,bj)-cg2d_x(i,j-1,bi,bj))
185 ENDDO
186 ENDDO
187
188 #ifdef ALLOW_OBCS
189 IF (useOBCS) THEN
190 DO i=1,sNx+1
191 C Northern boundary
192 IF (OB_Jn(I,bi,bj).NE.0) THEN
193 vf(I,OB_Jn(I,bi,bj))=0.
194 ENDIF
195 C Southern boundary
196 IF (OB_Js(I,bi,bj).NE.0) THEN
197 vf(I,OB_Js(I,bi,bj)+1)=0.
198 ENDIF
199 ENDDO
200 DO j=1,sNy+1
201 C Eastern boundary
202 IF (OB_Ie(J,bi,bj).NE.0) THEN
203 uf(OB_Ie(J,bi,bj),J)=0.
204 ENDIF
205 C Western boundary
206 IF (OB_Iw(J,bi,bj).NE.0) THEN
207 uf(OB_Iw(J,bi,bj)+1,J)=0.
208 ENDIF
209 ENDDO
210 ENDIF
211 #endif
212
213 K=1
214 DO j=1,sNy
215 DO i=1,sNx
216 cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj)
217 & +dRF(K)*dYG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j)
218 & -dRF(K)*dYG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j)
219 & +dRF(K)*dXG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1)
220 & -dRF(K)*dXG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j )
221 & +( freeSurfFac*etaN(i,j,bi,bj)/deltaTMom
222 & -wVel(i,j,k+1,bi,bj)
223 & )*_rA(i,j,bi,bj)/deltaTmom
224 ENDDO
225 ENDDO
226 DO K=2,Nr-1
227 DO j=1,sNy
228 DO i=1,sNx
229 cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj)
230 & +dRF(K)*dYG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j)
231 & -dRF(K)*dYG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j)
232 & +dRF(K)*dXG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1)
233 & -dRF(K)*dXG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j )
234 & +( wVel(i,j,k ,bi,bj)
235 & -wVel(i,j,k+1,bi,bj)
236 & )*_rA(i,j,bi,bj)/deltaTmom
237
238 ENDDO
239 ENDDO
240 ENDDO
241 K=Nr
242 DO j=1,sNy
243 DO i=1,sNx
244 cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj)
245 & +dRF(K)*dYG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j)
246 & -dRF(K)*dYG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j)
247 & +dRF(K)*dXG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1)
248 & -dRF(K)*dXG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j )
249 & +( wVel(i,j,k ,bi,bj)
250 & )*_rA(i,j,bi,bj)/deltaTmom
251
252 ENDDO
253 ENDDO
254
255 #ifdef ALLOW_OBCS
256 IF (useOBCS) THEN
257 DO K=1,Nr
258 DO i=1,sNx
259 C Northern boundary
260 IF (OB_Jn(I,bi,bj).NE.0) THEN
261 cg3d_b(I,OB_Jn(I,bi,bj),K,bi,bj)=0.
262 ENDIF
263 C Southern boundary
264 IF (OB_Js(I,bi,bj).NE.0) THEN
265 cg3d_b(I,OB_Js(I,bi,bj),K,bi,bj)=0.
266 ENDIF
267 ENDDO
268 DO j=1,sNy
269 C Eastern boundary
270 IF (OB_Ie(J,bi,bj).NE.0) THEN
271 cg3d_b(OB_Ie(J,bi,bj),J,K,bi,bj)=0.
272 ENDIF
273 C Western boundary
274 IF (OB_Iw(J,bi,bj).NE.0) THEN
275 cg3d_b(OB_Iw(J,bi,bj),J,K,bi,bj)=0.
276 ENDIF
277 ENDDO
278 ENDDO
279 ENDIF
280 #endif
281
282 ENDDO ! bi
283 ENDDO ! bj
284
285 CALL CG3D( myThid )
286 _EXCH_XYZ_R8(cg3d_x, myThid )
287
288 ENDIF
289 #endif
290
291 RETURN
292 END

  ViewVC Help
Powered by ViewVC 1.1.22