C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/solve_for_pressure.F,v 1.54 2006/05/05 19:00:28 ce107 Exp $ C $Name: $ #include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" CBOP C !ROUTINE: SOLVE_FOR_PRESSURE C !INTERFACE: SUBROUTINE SOLVE_FOR_PRESSURE(myTime, myIter, myThid) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE SOLVE_FOR_PRESSURE C | o Controls inversion of two and/or three-dimensional C | elliptic problems for the pressure field. C *==========================================================* C \ev C !USES: IMPLICIT NONE C == Global variables #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" #include "SURFACE.h" #include "FFIELDS.h" #include "DYNVARS.h" #include "SOLVE_FOR_PRESSURE.h" #ifdef ALLOW_NONHYDROSTATIC #include "SOLVE_FOR_PRESSURE3D.h" #include "NH_VARS.h" #endif #ifdef ALLOW_CD_CODE #include "CD_CODE_VARS.h" #endif #ifdef ALLOW_OBCS #include "OBCS.h" #endif C === Functions ==== LOGICAL DIFFERENT_MULTIPLE EXTERNAL DIFFERENT_MULTIPLE C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myTime - Current time in simulation C myIter - Current iteration number in simulation C myThid - Thread number for this instance of SOLVE_FOR_PRESSURE _RL myTime INTEGER myIter INTEGER myThid C !LOCAL VARIABLES: C == Local variables == INTEGER i,j,k,bi,bj _RS uf(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RS vf(1-Olx:sNx+Olx,1-Oly:sNy+Oly) _RL firstResidual,lastResidual _RL tmpFac _RL sumEmP, tileEmP LOGICAL putPmEinXvector INTEGER numIters CHARACTER*(MAX_LEN_MBUF) msgBuf #ifdef ALLOW_NONHYDROSTATIC INTEGER ks, kp1 _RL maskKp1 LOGICAL zeroPsNH #endif CEOP #ifdef TIME_PER_TIMESTEP_SFP CCE107 common block for per timestep timing C !TIMING VARIABLES C == Timing variables == REAL*8 utnew, utold, stnew, stold, wtnew, wtold COMMON /timevars/ utnew, utold, stnew, stold, wtnew, wtold #endif #ifdef USE_PAPI_FLOPS_SFP CCE107 common block for PAPI summary performance #include INTEGER*8 flpops, instr INTEGER check REAL*4 real_time, proc_time, mflops, ipc COMMON /papivars/ flpops, instr, real_time, proc_time, mflops, ipc #else #ifdef USE_PCL_FLOPS_SFP CCE107 common block for PCL summary performance #include INTEGER pcl_counter_list(5), flags, nevents, res, ipcl INTEGER*8 i_result(5), descr REAL*8 fp_result(5) COMMON /pclvars/ i_result, descr, fp_result, pcl_counter_list, $ flags, nevents INTEGER nmaxevents PARAMETER (nmaxevents = 61) CHARACTER*22 pcl_counter_name(0:nmaxevents-1) COMMON /pclnames/ pcl_counter_name #endif #endif #ifdef ALLOW_NONHYDROSTATIC c zeroPsNH = .FALSE. zeroPsNH = exactConserv #endif C-- Initialise the Vector solution with etaN + deltaT*Global_mean_PmE C instead of simply etaN ; This can speed-up the solver convergence in C the case where |Global_mean_PmE| is large. putPmEinXvector = .FALSE. c putPmEinXvector = useRealFreshWaterFlux C-- Save previous solution & Initialise Vector solution and source term : sumEmP = 0. DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx #ifdef ALLOW_CD_CODE etaNm1(i,j,bi,bj) = etaN(i,j,bi,bj) #endif cg2d_x(i,j,bi,bj) = Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj) cg2d_b(i,j,bi,bj) = 0. ENDDO ENDDO IF (useRealFreshWaterFlux) THEN tmpFac = freeSurfFac*convertEmP2rUnit IF (exactConserv) & tmpFac = freeSurfFac*convertEmP2rUnit*implicDiv2DFlow DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = & tmpFac*_rA(i,j,bi,bj)*EmPmR(i,j,bi,bj)/deltaTMom ENDDO ENDDO ENDIF IF ( putPmEinXvector ) THEN tileEmP = 0. DO j=1,sNy DO i=1,sNx tileEmP = tileEmP + rA(i,j,bi,bj)*EmPmR(i,j,bi,bj) & *maskH(i,j,bi,bj) ENDDO ENDDO sumEmP = sumEmP + tileEmP ENDIF ENDDO ENDDO IF ( putPmEinXvector ) THEN _GLOBAL_SUM_R8( sumEmP, myThid ) ENDIF DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) IF ( putPmEinXvector ) THEN tmpFac = 0. IF (globalArea.GT.0.) tmpFac = freeSurfFac*deltaTfreesurf & *convertEmP2rUnit*sumEmP/globalArea DO j=1,sNy DO i=1,sNx cg2d_x(i,j,bi,bj) = cg2d_x(i,j,bi,bj) & - tmpFac*Bo_surf(i,j,bi,bj) ENDDO ENDDO ENDIF DO K=Nr,1,-1 DO j=1,sNy+1 DO i=1,sNx+1 uf(i,j) = _dyG(i,j,bi,bj) & *drF(k)*_hFacW(i,j,k,bi,bj) vf(i,j) = _dxG(i,j,bi,bj) & *drF(k)*_hFacS(i,j,k,bi,bj) ENDDO ENDDO CALL CALC_DIV_GHAT( I bi,bj,1,sNx,1,sNy,K, I uf,vf, U cg2d_b, I myThid) ENDDO ENDDO ENDDO C-- Add source term arising from w=d/dt (p_s + p_nh) DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) #ifdef ALLOW_NONHYDROSTATIC IF ( use3Dsolver .AND. zeroPsNH ) THEN DO j=1,sNy DO i=1,sNx ks = ksurfC(i,j,bi,bj) IF ( ks.LE.Nr ) THEN cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf & * etaH(i,j,bi,bj) cg3d_b(i,j,ks,bi,bj) = cg3d_b(i,j,ks,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf & * etaH(i,j,bi,bj) ENDIF ENDDO ENDDO ELSEIF ( use3Dsolver ) THEN DO j=1,sNy DO i=1,sNx ks = ksurfC(i,j,bi,bj) IF ( ks.LE.Nr ) THEN cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf & *( etaN(i,j,bi,bj) & +phi_nh(i,j,ks,bi,bj)*horiVertRatio/gravity ) cg3d_b(i,j,ks,bi,bj) = cg3d_b(i,j,ks,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf & *( etaN(i,j,bi,bj) & +phi_nh(i,j,ks,bi,bj)*horiVertRatio/gravity ) ENDIF ENDDO ENDDO ELSEIF ( exactConserv ) THEN #else IF ( exactConserv ) THEN #endif /* ALLOW_NONHYDROSTATIC */ DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf & * etaH(i,j,bi,bj) ENDDO ENDDO ELSE DO j=1,sNy DO i=1,sNx cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj) & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf & * etaN(i,j,bi,bj) ENDDO ENDDO ENDIF #ifdef ALLOW_OBCS IF (useOBCS) THEN DO i=1,sNx C Northern boundary IF (OB_Jn(I,bi,bj).NE.0) THEN cg2d_b(I,OB_Jn(I,bi,bj),bi,bj)=0. cg2d_x(I,OB_Jn(I,bi,bj),bi,bj)=0. ENDIF C Southern boundary IF (OB_Js(I,bi,bj).NE.0) THEN cg2d_b(I,OB_Js(I,bi,bj),bi,bj)=0. cg2d_x(I,OB_Js(I,bi,bj),bi,bj)=0. ENDIF ENDDO DO j=1,sNy C Eastern boundary IF (OB_Ie(J,bi,bj).NE.0) THEN cg2d_b(OB_Ie(J,bi,bj),J,bi,bj)=0. cg2d_x(OB_Ie(J,bi,bj),J,bi,bj)=0. ENDIF C Western boundary IF (OB_Iw(J,bi,bj).NE.0) THEN cg2d_b(OB_Iw(J,bi,bj),J,bi,bj)=0. cg2d_x(OB_Iw(J,bi,bj),J,bi,bj)=0. ENDIF ENDDO ENDIF #endif /* ALLOW_OBCS */ C- end bi,bj loops ENDDO ENDDO #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevB ) THEN CALL DEBUG_STATS_RL(1,cg2d_b,'cg2d_b (SOLVE_FOR_PRESSURE)', & myThid) ENDIF #endif C-- Find the surface pressure using a two-dimensional conjugate C-- gradient solver. C see CG2D.h for the interface to this routine. firstResidual=0. lastResidual=0. numIters=cg2dMaxIters c CALL TIMER_START('CG2D [SOLVE_FOR_PRESSURE]',myThid) CALL CG2D( U cg2d_b, U cg2d_x, O firstResidual, O lastResidual, U numIters, I myThid ) _EXCH_XY_R8(cg2d_x, myThid ) c CALL TIMER_STOP ('CG2D [SOLVE_FOR_PRESSURE]',myThid) #ifdef ALLOW_DEBUG IF ( debugLevel .GE. debLevB ) THEN CALL DEBUG_STATS_RL(1,cg2d_x,'cg2d_x (SOLVE_FOR_PRESSURE)', & myThid) ENDIF #endif C- dump CG2D output at monitorFreq (to reduce size of STD-OUTPUT files) : IF ( DIFFERENT_MULTIPLE(monitorFreq,myTime,deltaTClock) & ) THEN IF ( debugLevel .GE. debLevA ) THEN _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(A34,1PE24.14)') 'cg2d_init_res =',firstResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A34,I6)') 'cg2d_iters =',numIters CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A34,1PE24.14)') 'cg2d_res =',lastResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) _END_MASTER( myThid ) ENDIF ENDIF C-- Transfert the 2D-solution to "etaN" : DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx etaN(i,j,bi,bj) = recip_Bo(i,j,bi,bj)*cg2d_x(i,j,bi,bj) ENDDO ENDDO ENDDO ENDDO #ifdef ALLOW_NONHYDROSTATIC IF ( use3Dsolver ) THEN C-- Solve for a three-dimensional pressure term (NH or IGW or both ). C see CG3D.h for the interface to this routine. DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) DO j=1,sNy+1 DO i=1,sNx+1 uf(i,j)=-_recip_dxC(i,j,bi,bj)* & (cg2d_x(i,j,bi,bj)-cg2d_x(i-1,j,bi,bj)) vf(i,j)=-_recip_dyC(i,j,bi,bj)* & (cg2d_x(i,j,bi,bj)-cg2d_x(i,j-1,bi,bj)) ENDDO ENDDO #ifdef ALLOW_OBCS IF (useOBCS) THEN DO i=1,sNx+1 C Northern boundary IF (OB_Jn(I,bi,bj).NE.0) THEN vf(I,OB_Jn(I,bi,bj))=0. ENDIF C Southern boundary IF (OB_Js(I,bi,bj).NE.0) THEN vf(I,OB_Js(I,bi,bj)+1)=0. ENDIF ENDDO DO j=1,sNy+1 C Eastern boundary IF (OB_Ie(J,bi,bj).NE.0) THEN uf(OB_Ie(J,bi,bj),J)=0. ENDIF C Western boundary IF (OB_Iw(J,bi,bj).NE.0) THEN uf(OB_Iw(J,bi,bj)+1,J)=0. ENDIF ENDDO ENDIF #endif /* ALLOW_OBCS */ IF ( usingZCoords ) THEN C- Z coordinate: assume surface @ level k=1 tmpFac = freeSurfFac ELSE C- Other than Z coordinate: no assumption on surface level index tmpFac = 0. DO j=1,sNy DO i=1,sNx ks = ksurfC(i,j,bi,bj) IF ( ks.LE.Nr ) THEN cg3d_b(i,j,ks,bi,bj) = cg3d_b(i,j,ks,bi,bj) & +freeSurfFac*etaN(i,j,bi,bj)/deltaTfreesurf & *_rA(i,j,bi,bj)/deltaTmom ENDIF ENDDO ENDDO ENDIF K=1 kp1 = MIN(k+1,Nr) maskKp1 = 1. IF (k.GE.Nr) maskKp1 = 0. DO j=1,sNy DO i=1,sNx cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj) & +drF(K)*dyG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j) & -drF(K)*dyG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j) & +drF(K)*dxG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1) & -drF(K)*dxG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j ) & +( tmpFac*etaN(i,j,bi,bj)/deltaTfreesurf & -wVel(i,j,kp1,bi,bj)*maskKp1 & )*_rA(i,j,bi,bj)/deltaTmom ENDDO ENDDO DO K=2,Nr kp1 = MIN(k+1,Nr) maskKp1 = 1. IF (k.GE.Nr) maskKp1 = 0. DO j=1,sNy DO i=1,sNx cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj) & +drF(K)*dyG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j) & -drF(K)*dyG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j) & +drF(K)*dxG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1) & -drF(K)*dxG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j ) & +( wVel(i,j,k ,bi,bj)*maskC(i,j,k-1,bi,bj) & -wVel(i,j,kp1,bi,bj)*maskKp1 & )*_rA(i,j,bi,bj)/deltaTmom ENDDO ENDDO ENDDO #ifdef ALLOW_OBCS IF (useOBCS) THEN DO K=1,Nr DO i=1,sNx C Northern boundary IF (OB_Jn(I,bi,bj).NE.0) THEN cg3d_b(I,OB_Jn(I,bi,bj),K,bi,bj)=0. ENDIF C Southern boundary IF (OB_Js(I,bi,bj).NE.0) THEN cg3d_b(I,OB_Js(I,bi,bj),K,bi,bj)=0. ENDIF ENDDO DO j=1,sNy C Eastern boundary IF (OB_Ie(J,bi,bj).NE.0) THEN cg3d_b(OB_Ie(J,bi,bj),J,K,bi,bj)=0. ENDIF C Western boundary IF (OB_Iw(J,bi,bj).NE.0) THEN cg3d_b(OB_Iw(J,bi,bj),J,K,bi,bj)=0. ENDIF ENDDO ENDDO ENDIF #endif /* ALLOW_OBCS */ C- end bi,bj loops ENDDO ENDDO firstResidual=0. lastResidual=0. numIters=cg3dMaxIters CALL TIMER_START('CG3D [SOLVE_FOR_PRESSURE]',myThid) CALL CG3D( U cg3d_b, U phi_nh, O firstResidual, O lastResidual, U numIters, I myThid ) _EXCH_XYZ_R8(phi_nh, myThid ) CALL TIMER_STOP ('CG3D [SOLVE_FOR_PRESSURE]',myThid) IF ( DIFFERENT_MULTIPLE(monitorFreq,myTime,deltaTClock) & ) THEN IF ( debugLevel .GE. debLevA ) THEN _BEGIN_MASTER( myThid ) WRITE(msgBuf,'(A34,1PE24.14)') 'cg3d_init_res =',firstResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A34,I6)') 'cg3d_iters =',numIters CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) WRITE(msgBuf,'(A34,1PE24.14)') 'cg3d_res =',lastResidual CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) _END_MASTER( myThid ) ENDIF ENDIF C-- Update surface pressure (account for NH-p @ surface level) and NH pressure: IF ( zeroPsNH ) THEN DO bj=myByLo(myThid),myByHi(myThid) DO bi=myBxLo(myThid),myBxHi(myThid) IF ( usingZCoords ) THEN C- Z coordinate: assume surface @ level k=1 DO k=2,Nr DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx phi_nh(i,j,k,bi,bj) = phi_nh(i,j,k,bi,bj) & - phi_nh(i,j,1,bi,bj) ENDDO ENDDO ENDDO DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx etaN(i,j,bi,bj) = recip_Bo(i,j,bi,bj) & *(cg2d_x(i,j,bi,bj) + phi_nh(i,j,1,bi,bj)) phi_nh(i,j,1,bi,bj) = 0. ENDDO ENDDO ELSE C- Other than Z coordinate: no assumption on surface level index DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx ks = ksurfC(i,j,bi,bj) IF ( ks.LE.Nr ) THEN etaN(i,j,bi,bj) = recip_Bo(i,j,bi,bj) & *(cg2d_x(i,j,bi,bj) + phi_nh(i,j,ks,bi,bj)) DO k=Nr,1,-1 phi_nh(i,j,k,bi,bj) = phi_nh(i,j,k,bi,bj) & - phi_nh(i,j,ks,bi,bj) ENDDO ENDIF ENDDO ENDDO ENDIF ENDDO ENDDO ENDIF ENDIF #endif /* ALLOW_NONHYDROSTATIC */ #ifdef TIME_PER_TIMESTEP_SFP CCE107 Time per timestep information _BEGIN_MASTER( myThid ) CALL TIMER_GET_TIME( utnew, stnew, wtnew ) C Only output timing information after the 1st timestep IF ( wtold .NE. 0.0D0 ) THEN WRITE(msgBuf,'(A34,3F10.6)') $ 'User, system and wallclock time:', utnew - utold, $ stnew - stold, wtnew - wtold CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) ENDIF utold = utnew stold = stnew wtold = wtnew _END_MASTER( myThid ) #endif #ifdef USE_PAPI_FLOPS_SFP CCE107 PAPI summary performance _BEGIN_MASTER( myThid ) #ifdef USE_FLIPS call PAPIF_flips(real_time, proc_time, flpops, mflops, check) #else call PAPIF_flops(real_time, proc_time, flpops, mflops, check) #endif WRITE(msgBuf,'(A34,F10.6)') $ 'Mflop/s during this timestep:', mflops CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) #ifdef PAPI_VERSION call PAPIF_ipc(real_time, proc_time, instr, ipc, check) WRITE(msgBuf,'(A34,F10.6)') $ 'IPC during this timestep:', ipc CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) #endif _END_MASTER( myThid ) #else #ifdef USE_PCL_FLOPS_SFP CCE107 PCL summary performance _BEGIN_MASTER( myThid ) PCLstop(descr, i_result, fp_result, nevents) do ipcl = 1, nevents WRITE(msgBuf,'(A22,A26,F10.6)'), $ pcl_counter_name(pcl_counter_list(ipcl)), $ 'during this timestep:', fp_results(ipcl) CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1) enddo PCLstart(descr, pcl_counter_list, nevents, flags) _END_MASTER( myThid ) #endif #endif RETURN END #ifdef TIME_PER_TIMESTEP_SFP CCE107 Initialization of common block for per timestep timing BLOCK DATA settimers C !TIMING VARIABLES C == Timing variables == REAL*8 utnew, utold, stnew, stold, wtnew, wtold COMMON /timevars/ utnew, utold, stnew, stold, wtnew, wtold DATA utnew, utold, stnew, stold, wtnew, wtold /6*0.0D0/ END #endif #ifdef USE_PAPI_FLOPS_SFP CCE107 Initialization of common block for PAPI summary performance BLOCK DATA setpapis INTEGER*8 flpops, instr REAL real_time, proc_time, mflops, ipc COMMON /papivars/ flpops, instr, real_time, proc_time, mflops, ipc DATA flpops, instr, real_time, proc_time, mflops, ipc /2*0,4*0.E0/ END #endif