/[MITgcm]/MITgcm/model/src/solve_for_pressure.F
ViewVC logotype

Annotation of /MITgcm/model/src/solve_for_pressure.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.35 - (hide annotations) (download)
Wed Sep 25 19:36:50 2002 UTC (21 years, 8 months ago) by mlosch
Branch: MAIN
CVS Tags: checkpoint46j_pre, checkpoint46i_post, checkpoint46h_post
Changes since 1.34: +11 -7 lines
o cleaned up the use of rhoNil and rhoConst.
  - rhoNil should only appear in the LINEAR equation of state, everywhere
    else rhoNil is replaced by rhoConst, e.g. find_rho computes rho-rhoConst
    and the dynamical equations are all divided by rhoConst
o introduced new parameter rhoConstFresh, a reference density of fresh
  water, to remove the fresh water flux's dependence on rhoNil. The default
  value is 999.8 kg/m^3
o cleanup up external_forcing.F and external_forcing_surf.F
  - can now be used by both OCEANIC and OCEANICP

1 mlosch 1.35 C $Header: /u/gcmpack/MITgcm/model/src/solve_for_pressure.F,v 1.34 2002/09/23 16:13:31 adcroft Exp $
2 heimbach 1.21 C $Name: $
3 cnh 1.1
4 adcroft 1.5 #include "CPP_OPTIONS.h"
5 cnh 1.1
6 cnh 1.27 CBOP
7     C !ROUTINE: SOLVE_FOR_PRESSURE
8     C !INTERFACE:
9 jmc 1.29 SUBROUTINE SOLVE_FOR_PRESSURE(myTime, myIter, myThid)
10 cnh 1.27
11     C !DESCRIPTION: \bv
12     C *==========================================================*
13     C | SUBROUTINE SOLVE_FOR_PRESSURE
14     C | o Controls inversion of two and/or three-dimensional
15     C | elliptic problems for the pressure field.
16     C *==========================================================*
17     C \ev
18    
19     C !USES:
20 adcroft 1.8 IMPLICIT NONE
21 cnh 1.4 C == Global variables
22     #include "SIZE.h"
23     #include "EEPARAMS.h"
24     #include "PARAMS.h"
25     #include "DYNVARS.h"
26 adcroft 1.12 #include "GRID.h"
27 jmc 1.17 #include "SURFACE.h"
28 jmc 1.28 #include "FFIELDS.h"
29 adcroft 1.9 #ifdef ALLOW_NONHYDROSTATIC
30 adcroft 1.25 #include "SOLVE_FOR_PRESSURE3D.h"
31 adcroft 1.9 #include "GW.h"
32 adcroft 1.12 #endif
33 adcroft 1.11 #ifdef ALLOW_OBCS
34 adcroft 1.9 #include "OBCS.h"
35 adcroft 1.11 #endif
36 adcroft 1.22 #include "SOLVE_FOR_PRESSURE.h"
37 cnh 1.4
38 jmc 1.32 C === Functions ====
39     LOGICAL DIFFERENT_MULTIPLE
40     EXTERNAL DIFFERENT_MULTIPLE
41    
42 cnh 1.27 C !INPUT/OUTPUT PARAMETERS:
43 cnh 1.1 C == Routine arguments ==
44 jmc 1.28 C myTime - Current time in simulation
45     C myIter - Current iteration number in simulation
46     C myThid - Thread number for this instance of SOLVE_FOR_PRESSURE
47     _RL myTime
48     INTEGER myIter
49 jmc 1.29 INTEGER myThid
50 cnh 1.4
51 cnh 1.27 C !LOCAL VARIABLES:
52 adcroft 1.22 C == Local variables ==
53 cnh 1.6 INTEGER i,j,k,bi,bj
54 adcroft 1.9 _RS uf(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
55     _RS vf(1-Olx:sNx+Olx,1-Oly:sNy+Oly)
56 adcroft 1.22 _RL firstResidual,lastResidual
57 mlosch 1.35 _RL tmpFac, convertVol2Mass
58 adcroft 1.19 INTEGER numIters
59 adcroft 1.25 CHARACTER*(MAX_LEN_MBUF) msgBuf
60 cnh 1.27 CEOP
61 jmc 1.17
62 mlosch 1.35 IF ( buoyancyRelation .eq. 'OCEANICP' ) THEN
63     convertVol2Mass = gravity*rhoConstFresh
64     ELSE
65     convertVol2Mass = 1. _d 0
66     ENDIF
67    
68 jmc 1.17 C-- Save previous solution & Initialise Vector solution and source term :
69     DO bj=myByLo(myThid),myByHi(myThid)
70     DO bi=myBxLo(myThid),myBxHi(myThid)
71     DO j=1-OLy,sNy+OLy
72     DO i=1-OLx,sNx+OLx
73 jmc 1.26 #ifdef INCLUDE_CD_CODE
74 jmc 1.17 etaNm1(i,j,bi,bj) = etaN(i,j,bi,bj)
75 jmc 1.26 #endif
76 jmc 1.18 cg2d_x(i,j,bi,bj) = Bo_surf(i,j,bi,bj)*etaN(i,j,bi,bj)
77 jmc 1.17 cg2d_b(i,j,bi,bj) = 0.
78     ENDDO
79     ENDDO
80 jmc 1.29 IF (useRealFreshWaterFlux) THEN
81 mlosch 1.35 tmpFac = freeSurfFac*convertVol2Mass
82     IF (exactConserv)
83     & tmpFac = freeSurfFac*convertVol2Mass*implicDiv2DFlow
84 jmc 1.29 DO j=1,sNy
85     DO i=1,sNx
86     cg2d_b(i,j,bi,bj) =
87     & tmpFac*_rA(i,j,bi,bj)*EmPmR(i,j,bi,bj)/deltaTMom
88     ENDDO
89     ENDDO
90     ENDIF
91 jmc 1.17 ENDDO
92     ENDDO
93 adcroft 1.12
94     DO bj=myByLo(myThid),myByHi(myThid)
95     DO bi=myBxLo(myThid),myBxHi(myThid)
96     DO K=Nr,1,-1
97     DO j=1,sNy+1
98     DO i=1,sNx+1
99     uf(i,j) = _dyG(i,j,bi,bj)
100     & *drF(k)*_hFacW(i,j,k,bi,bj)
101     vf(i,j) = _dxG(i,j,bi,bj)
102     & *drF(k)*_hFacS(i,j,k,bi,bj)
103     ENDDO
104     ENDDO
105     CALL CALC_DIV_GHAT(
106     I bi,bj,1,sNx,1,sNy,K,
107     I uf,vf,
108 jmc 1.17 U cg2d_b,
109 adcroft 1.12 I myThid)
110     ENDDO
111     ENDDO
112     ENDDO
113 cnh 1.4
114 adcroft 1.12 C-- Add source term arising from w=d/dt (p_s + p_nh)
115     DO bj=myByLo(myThid),myByHi(myThid)
116     DO bi=myBxLo(myThid),myBxHi(myThid)
117 adcroft 1.13 #ifdef ALLOW_NONHYDROSTATIC
118 jmc 1.28 IF ( nonHydrostatic ) THEN
119     DO j=1,sNy
120     DO i=1,sNx
121     cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj)
122 adcroft 1.33 & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf
123 jmc 1.28 & *( etaN(i,j,bi,bj)
124     & +phi_nh(i,j,1,bi,bj)*horiVertRatio/gravity )
125     cg3d_b(i,j,1,bi,bj) = cg3d_b(i,j,1,bi,bj)
126 adcroft 1.33 & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf
127 jmc 1.28 & *( etaN(i,j,bi,bj)
128     & +phi_nh(i,j,1,bi,bj)*horiVertRatio/gravity )
129     ENDDO
130 adcroft 1.12 ENDDO
131 jmc 1.28 ELSEIF ( exactConserv ) THEN
132 adcroft 1.13 #else
133 jmc 1.26 IF ( exactConserv ) THEN
134 jmc 1.28 #endif
135 jmc 1.26 DO j=1,sNy
136     DO i=1,sNx
137     cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj)
138 adcroft 1.33 & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf
139 jmc 1.26 & * etaH(i,j,bi,bj)
140     ENDDO
141     ENDDO
142     ELSE
143     DO j=1,sNy
144     DO i=1,sNx
145     cg2d_b(i,j,bi,bj) = cg2d_b(i,j,bi,bj)
146 adcroft 1.33 & -freeSurfFac*_rA(i,j,bi,bj)/deltaTMom/deltaTfreesurf
147 jmc 1.26 & * etaN(i,j,bi,bj)
148     ENDDO
149 adcroft 1.12 ENDDO
150 jmc 1.26 ENDIF
151 adcroft 1.12
152     #ifdef ALLOW_OBCS
153 adcroft 1.14 IF (useOBCS) THEN
154 adcroft 1.12 DO i=1,sNx
155     C Northern boundary
156     IF (OB_Jn(I,bi,bj).NE.0) THEN
157     cg2d_b(I,OB_Jn(I,bi,bj),bi,bj)=0.
158 jmc 1.31 cg2d_x(I,OB_Jn(I,bi,bj),bi,bj)=0.
159 adcroft 1.12 ENDIF
160     C Southern boundary
161     IF (OB_Js(I,bi,bj).NE.0) THEN
162     cg2d_b(I,OB_Js(I,bi,bj),bi,bj)=0.
163 jmc 1.31 cg2d_x(I,OB_Js(I,bi,bj),bi,bj)=0.
164 adcroft 1.12 ENDIF
165     ENDDO
166     DO j=1,sNy
167     C Eastern boundary
168     IF (OB_Ie(J,bi,bj).NE.0) THEN
169     cg2d_b(OB_Ie(J,bi,bj),J,bi,bj)=0.
170 jmc 1.31 cg2d_x(OB_Ie(J,bi,bj),J,bi,bj)=0.
171 adcroft 1.12 ENDIF
172     C Western boundary
173     IF (OB_Iw(J,bi,bj).NE.0) THEN
174     cg2d_b(OB_Iw(J,bi,bj),J,bi,bj)=0.
175 jmc 1.31 cg2d_x(OB_Iw(J,bi,bj),J,bi,bj)=0.
176 adcroft 1.12 ENDIF
177     ENDDO
178     ENDIF
179     #endif
180     ENDDO
181     ENDDO
182    
183 adcroft 1.30 #ifndef DISABLE_DEBUGMODE
184 adcroft 1.24 IF (debugMode) THEN
185 adcroft 1.23 CALL DEBUG_STATS_RL(1,cg2d_b,'cg2d_b (SOLVE_FOR_PRESSURE)',
186     & myThid)
187 adcroft 1.24 ENDIF
188 adcroft 1.23 #endif
189 adcroft 1.12
190 cnh 1.1 C-- Find the surface pressure using a two-dimensional conjugate
191     C-- gradient solver.
192 adcroft 1.22 C see CG2D.h for the interface to this routine.
193     firstResidual=0.
194     lastResidual=0.
195 adcroft 1.19 numIters=cg2dMaxIters
196 cnh 1.1 CALL CG2D(
197 adcroft 1.22 U cg2d_b,
198 cnh 1.6 U cg2d_x,
199 adcroft 1.22 O firstResidual,
200     O lastResidual,
201 adcroft 1.19 U numIters,
202 cnh 1.1 I myThid )
203 adcroft 1.19 _EXCH_XY_R8(cg2d_x, myThid )
204 adcroft 1.23
205 adcroft 1.30 #ifndef DISABLE_DEBUGMODE
206 adcroft 1.24 IF (debugMode) THEN
207 adcroft 1.23 CALL DEBUG_STATS_RL(1,cg2d_x,'cg2d_x (SOLVE_FOR_PRESSURE)',
208     & myThid)
209 adcroft 1.24 ENDIF
210 adcroft 1.23 #endif
211 cnh 1.1
212 jmc 1.32 C- dump CG2D output at monitorFreq (to reduce size of STD-OUTPUT files) :
213     IF ( DIFFERENT_MULTIPLE(monitorFreq,myTime,
214     & myTime-deltaTClock) ) THEN
215     _BEGIN_MASTER( myThid )
216     WRITE(msgBuf,'(A34,1PE24.14)') 'cg2d_init_res =',firstResidual
217     CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
218     WRITE(msgBuf,'(A34,I6)') 'cg2d_iters =',numIters
219     CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
220     WRITE(msgBuf,'(A34,1PE24.14)') 'cg2d_res =',lastResidual
221     CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
222     _END_MASTER( )
223     ENDIF
224 jmc 1.17
225     C-- Transfert the 2D-solution to "etaN" :
226     DO bj=myByLo(myThid),myByHi(myThid)
227     DO bi=myBxLo(myThid),myBxHi(myThid)
228     DO j=1-OLy,sNy+OLy
229     DO i=1-OLx,sNx+OLx
230 jmc 1.18 etaN(i,j,bi,bj) = recip_Bo(i,j,bi,bj)*cg2d_x(i,j,bi,bj)
231 jmc 1.17 ENDDO
232     ENDDO
233     ENDDO
234     ENDDO
235 adcroft 1.10
236 adcroft 1.9 #ifdef ALLOW_NONHYDROSTATIC
237     IF ( nonHydrostatic ) THEN
238    
239     C-- Solve for a three-dimensional pressure term (NH or IGW or both ).
240     C see CG3D.h for the interface to this routine.
241     DO bj=myByLo(myThid),myByHi(myThid)
242     DO bi=myBxLo(myThid),myBxHi(myThid)
243     DO j=1,sNy+1
244     DO i=1,sNx+1
245 jmc 1.18 uf(i,j)=-_recip_dxC(i,j,bi,bj)*
246 adcroft 1.9 & (cg2d_x(i,j,bi,bj)-cg2d_x(i-1,j,bi,bj))
247 jmc 1.18 vf(i,j)=-_recip_dyC(i,j,bi,bj)*
248 adcroft 1.9 & (cg2d_x(i,j,bi,bj)-cg2d_x(i,j-1,bi,bj))
249     ENDDO
250     ENDDO
251    
252 adcroft 1.12 #ifdef ALLOW_OBCS
253 adcroft 1.14 IF (useOBCS) THEN
254 adcroft 1.9 DO i=1,sNx+1
255     C Northern boundary
256     IF (OB_Jn(I,bi,bj).NE.0) THEN
257     vf(I,OB_Jn(I,bi,bj))=0.
258     ENDIF
259     C Southern boundary
260     IF (OB_Js(I,bi,bj).NE.0) THEN
261     vf(I,OB_Js(I,bi,bj)+1)=0.
262     ENDIF
263     ENDDO
264     DO j=1,sNy+1
265     C Eastern boundary
266     IF (OB_Ie(J,bi,bj).NE.0) THEN
267     uf(OB_Ie(J,bi,bj),J)=0.
268     ENDIF
269     C Western boundary
270     IF (OB_Iw(J,bi,bj).NE.0) THEN
271     uf(OB_Iw(J,bi,bj)+1,J)=0.
272     ENDIF
273     ENDDO
274     ENDIF
275 adcroft 1.12 #endif
276 adcroft 1.9
277 adcroft 1.12 K=1
278     DO j=1,sNy
279     DO i=1,sNx
280     cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj)
281     & +dRF(K)*dYG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j)
282     & -dRF(K)*dYG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j)
283     & +dRF(K)*dXG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1)
284     & -dRF(K)*dXG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j )
285 jmc 1.18 & +( freeSurfFac*etaN(i,j,bi,bj)/deltaTMom
286     & -wVel(i,j,k+1,bi,bj)
287 adcroft 1.12 & )*_rA(i,j,bi,bj)/deltaTmom
288     ENDDO
289     ENDDO
290     DO K=2,Nr-1
291 adcroft 1.9 DO j=1,sNy
292     DO i=1,sNx
293     cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj)
294     & +dRF(K)*dYG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j)
295     & -dRF(K)*dYG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j)
296     & +dRF(K)*dXG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1)
297     & -dRF(K)*dXG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j )
298 adcroft 1.12 & +( wVel(i,j,k ,bi,bj)
299     & -wVel(i,j,k+1,bi,bj)
300     & )*_rA(i,j,bi,bj)/deltaTmom
301    
302 adcroft 1.9 ENDDO
303     ENDDO
304     ENDDO
305 adcroft 1.12 K=Nr
306     DO j=1,sNy
307     DO i=1,sNx
308     cg3d_b(i,j,k,bi,bj) = cg3d_b(i,j,k,bi,bj)
309     & +dRF(K)*dYG(i+1,j,bi,bj)*hFacW(i+1,j,k,bi,bj)*uf(i+1,j)
310     & -dRF(K)*dYG( i ,j,bi,bj)*hFacW( i ,j,k,bi,bj)*uf( i ,j)
311     & +dRF(K)*dXG(i,j+1,bi,bj)*hFacS(i,j+1,k,bi,bj)*vf(i,j+1)
312     & -dRF(K)*dXG(i, j ,bi,bj)*hFacS(i, j ,k,bi,bj)*vf(i, j )
313     & +( wVel(i,j,k ,bi,bj)
314     & )*_rA(i,j,bi,bj)/deltaTmom
315    
316     ENDDO
317     ENDDO
318    
319     #ifdef ALLOW_OBCS
320 adcroft 1.14 IF (useOBCS) THEN
321 adcroft 1.12 DO K=1,Nr
322     DO i=1,sNx
323     C Northern boundary
324     IF (OB_Jn(I,bi,bj).NE.0) THEN
325     cg3d_b(I,OB_Jn(I,bi,bj),K,bi,bj)=0.
326     ENDIF
327     C Southern boundary
328     IF (OB_Js(I,bi,bj).NE.0) THEN
329     cg3d_b(I,OB_Js(I,bi,bj),K,bi,bj)=0.
330     ENDIF
331     ENDDO
332     DO j=1,sNy
333     C Eastern boundary
334     IF (OB_Ie(J,bi,bj).NE.0) THEN
335     cg3d_b(OB_Ie(J,bi,bj),J,K,bi,bj)=0.
336     ENDIF
337     C Western boundary
338     IF (OB_Iw(J,bi,bj).NE.0) THEN
339     cg3d_b(OB_Iw(J,bi,bj),J,K,bi,bj)=0.
340     ENDIF
341     ENDDO
342     ENDDO
343     ENDIF
344     #endif
345 adcroft 1.9
346     ENDDO ! bi
347     ENDDO ! bj
348    
349 adcroft 1.25 firstResidual=0.
350     lastResidual=0.
351     numIters=cg2dMaxIters
352     CALL CG3D(
353     U cg3d_b,
354     U phi_nh,
355     O firstResidual,
356     O lastResidual,
357     U numIters,
358     I myThid )
359     _EXCH_XYZ_R8(phi_nh, myThid )
360    
361     _BEGIN_MASTER( myThid )
362     WRITE(msgBuf,'(A34,1PE24.14)') 'cg3d_init_res =',firstResidual
363     CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
364     WRITE(msgBuf,'(A34,I6)') 'cg3d_iters =',numIters
365     CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
366     WRITE(msgBuf,'(A34,1PE24.14)') 'cg3d_res =',lastResidual
367     CALL PRINT_MESSAGE(msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
368     _END_MASTER( )
369 adcroft 1.9
370     ENDIF
371     #endif
372 cnh 1.1
373     RETURN
374     END

  ViewVC Help
Powered by ViewVC 1.1.22