/[MITgcm]/MITgcm/model/src/modeldata_example.F
ViewVC logotype

Contents of /MITgcm/model/src/modeldata_example.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.4 - (show annotations) (download)
Mon May 25 21:29:45 1998 UTC (26 years ago) by cnh
Branch: MAIN
CVS Tags: checkpoint11, checkpoint10, checkpoint13, checkpoint12, checkpoint15, checkpoint14, checkpoint5, checkpoint4, checkpoint7, checkpoint6, checkpoint3, checkpoint9, checkpoint8, branch-point-rdot
Branch point for: checkpoint7-4degree-ref, branch-rdot
Changes since 1.3: +14 -1 lines
Added flags for turning off momentum equation and/or temperature equation

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/modeldata_example.F,v 1.3 1998/05/25 20:05:55 cnh Exp $
2
3 #include "CPP_EEOPTIONS.h"
4
5 C /==========================================================\
6 C | S/R MODELDATA_EXAMPLE |
7 C | o Write example data file |
8 C |==========================================================|
9 C | Notes |
10 C | ===== |
11 C | Some systems require & as the namelist terminator. |
12 C | Other systems use a / character. |
13 C \==========================================================/
14 SUBROUTINE MODELDATA_EXAMPLE( myThid )
15 #include "SIZE.h"
16 #include "EEPARAMS.h"
17 #include "PARAMS.h"
18
19 C -- Routine arguments --
20 INTEGER myThid
21
22 C -- Local variables --
23 CHARACTER*(MAX_LEN_MBUF) msgBuf
24
25 WRITE(msgBuf,'(A)') '// Shown below is an example "data" file.'
26 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
27 WRITE(msgBuf,'(A)') '// To use this example copy and paste the '
28 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
29 WRITE(msgBuf,'(A)') '// ">" lines. Then remove the text up to'
30 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
31 WRITE(msgBuf,'(A)') '// and including the ">".'
32 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
33 WRITE(msgBuf,'(A)') '># Example "data" file'
34 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
35 WRITE(msgBuf,'(A)') '># Lines beginning "#" are comments'
36 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
37
38 WRITE(msgBuf,'(A)') '># '
39 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
40 WRITE(msgBuf,'(A)') '># o Continuous equation parameters'
41 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
42 WRITE(msgBuf,'(A)') '># gravity - Accel due to gravity (m.s^2)'
43 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
44 WRITE(msgBuf,'(A)') '># rhonil - Reference density (kg/m^3)'
45 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
46 WRITE(msgBuf,'(A)') '># tAlpha - Thermal expansion coefficient (1/oC)'
47 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
48 WRITE(msgBuf,'(A)') '># sBeta - Haline contraction coefficient (1/ppt)'
49 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
50 WRITE(msgBuf,'(A)') '># f0 - Reference coriolis parameter ( 1/s ).'
51 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
52 WRITE(msgBuf,'(A)') '># ( South edge f on beta plane.)'
53 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
54 WRITE(msgBuf,'(A)') '># beta - df/dy ( s^-1.m^-1 ).'
55 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
56 WRITE(msgBuf,'(A)') '># viscAh - Horizontal eddy viscosity coefficient '
57 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
58 WRITE(msgBuf,'(A)') '># ( m^2/s ).'
59 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
60 WRITE(msgBuf,'(A)') '># viscAz - Vertical eddy viscosity coefficient '
61 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
62 WRITE(msgBuf,'(A)') '># ( m^2/s ).'
63 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
64 WRITE(msgBuf,'(A)') '># viscA4 - Biharmonic eddy viscosity coefficient '
65 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
66 WRITE(msgBuf,'(A)') '># ( m^4/s ).'
67 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
68 WRITE(msgBuf,'(A)') '># diffKhT - Horizontal temperature diffusivity '
69 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
70 WRITE(msgBuf,'(A)') '># ( m^2/s ).'
71 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
72 WRITE(msgBuf,'(A)') '># diffKzT - Vertical temperature diffusivity '
73 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
74 WRITE(msgBuf,'(A)') '># ( m^2/s ).'
75 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
76 WRITE(msgBuf,'(A)') '># diffK4T - Biharmonic temperature diffusivity '
77 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
78 WRITE(msgBuf,'(A)') '># ( m^4/s ).'
79 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
80 WRITE(msgBuf,'(A)') '># diffKhS - Horizontal salt diffusivity '
81 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
82 WRITE(msgBuf,'(A)') '># ( m^2/s ).'
83 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
84 WRITE(msgBuf,'(A)') '># diffKzS - Vertical salt diffusivity '
85 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
86 WRITE(msgBuf,'(A)') '># ( m^2/s ).'
87 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
88 WRITE(msgBuf,'(A)') '># diffK4S - Biharmonic salt diffusivity '
89 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
90 WRITE(msgBuf,'(A)') '># ( m^4/s ).'
91 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
92 WRITE(msgBuf,'(A)') '># momStepping - On/Off flag for momentum'
93 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
94 WRITE(msgBuf,'(A)') '># equation. '
95 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
96 WRITE(msgBuf,'(A)') '># momViscosity - On/Off flag for momentum'
97 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
98 WRITE(msgBuf,'(A)') '># mixing. '
99 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
100 WRITE(msgBuf,'(A)') '># momAdvection - On/Off flag for momentum'
101 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
102 WRITE(msgBuf,'(A)') '># self transport. '
103 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
104 WRITE(msgBuf,'(A)') '># momPressureForcing - On/Off flag for momentum'
105 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
106 WRITE(msgBuf,'(A)') '># pressure terms. '
107 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
108 WRITE(msgBuf,'(A)') '># useCoriolis - On/Off flag for momentum'
109 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
110 WRITE(msgBuf,'(A)') '># equation coriolis term. '
111 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
112 WRITE(msgBuf,'(A)') '># tempStepping - On/Off flag for temperature'
113 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
114 WRITE(msgBuf,'(A)') '># eqaution. '
115 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
116 WRITE(msgBuf,'(A)') '># tempDiffusion- On/Off flag for temperature'
117 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
118 WRITE(msgBuf,'(A)') '># mixing. '
119 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
120 WRITE(msgBuf,'(A)') '># tempAdvection- On/Off flag for temperature'
121 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
122 WRITE(msgBuf,'(A)') '># transport. '
123 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
124 WRITE(msgBuf,'(A)') '># tempForcing - On/Off flag for temperature'
125 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
126 WRITE(msgBuf,'(A)') '># forcing.'
127 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
128 WRITE(msgBuf,'(A)') '># saltDiffusion- On/Off flag for salt'
129 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
130 WRITE(msgBuf,'(A)') '># mixing. '
131 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
132 WRITE(msgBuf,'(A)') '># saltAdvection- On/Off flag for salt'
133 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
134 WRITE(msgBuf,'(A)') '># transport. '
135 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
136 WRITE(msgBuf,'(A)') '># saltForcing - On/Off flag for salt'
137 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
138 WRITE(msgBuf,'(A)') '># forcing.'
139 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
140 WRITE(msgBuf,'(A)') '># tRef - Reference vertical pot. temp'
141 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
142 WRITE(msgBuf,'(A)') '># sRef - Reference vertical salinity'
143 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
144 WRITE(msgBuf,'(A)') '>&PARM01'
145 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
146 WRITE(msgBuf,'(A)') '> gravity=9.81,'
147 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
148 WRITE(msgBuf,'(A)') '> rhonil=999.8,'
149 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
150 WRITE(msgBuf,'(A)') '> tAlpha=2.e-4,'
151 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
152 WRITE(msgBuf,'(A)') '> sBeta=7e-4'
153 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
154 WRITE(msgBuf,'(A)') '> f0=1.e-4'
155 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
156 WRITE(msgBuf,'(A)') '> viscAh=1.e3'
157 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
158 WRITE(msgBuf,'(A)') '> viscAz=1.e-5'
159 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
160 WRITE(msgBuf,'(A)') '> viscA4=0.'
161 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
162 WRITE(msgBuf,'(A)') '> diffKhT=1.e3'
163 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
164 WRITE(msgBuf,'(A)') '> diffKzT=1.e-5'
165 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
166 WRITE(msgBuf,'(A)') '> diffK4T=0.'
167 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
168 WRITE(msgBuf,'(A)') '> diffKhS=1.e3'
169 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
170 WRITE(msgBuf,'(A)') '> diffKzS=1.e-5'
171 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
172 WRITE(msgBuf,'(A)') '> diffK4S=0.'
173 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
174 WRITE(msgBuf,'(A)') '> momStepping=.TRUE.'
175 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
176 WRITE(msgBuf,'(A)') '> momViscosity=.TRUE.'
177 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
178 WRITE(msgBuf,'(A)') '> momAdvection=.TRUE.'
179 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
180 WRITE(msgBuf,'(A)') '> momPressureForcing=.TRUE.'
181 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
182 WRITE(msgBuf,'(A)') '> momForcing=.TRUE.'
183 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
184 WRITE(msgBuf,'(A)') '> useCoriolis=.TRUE.'
185 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
186 WRITE(msgBuf,'(A)') '> tempStepping=.TRUE.'
187 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
188 WRITE(msgBuf,'(A)') '> tempDiffusion=.TRUE.'
189 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
190 WRITE(msgBuf,'(A)') '> tempAdvection=.TRUE.'
191 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
192 WRITE(msgBuf,'(A)') '> tempForcing=.TRUE.'
193 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
194 WRITE(msgBuf,'(A)') '> saltDiffusion=.TRUE.'
195 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
196 WRITE(msgBuf,'(A)') '> saltAdvection=.TRUE.'
197 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
198 WRITE(msgBuf,'(A)') '> saltForcing=.TRUE.'
199 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
200 WRITE(msgBuf,'(A)') '> tRef=20.,'
201 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
202 WRITE(msgBuf,'(A)') '> sRef=35.,'
203 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
204 WRITE(msgBuf,'(A)') '> implicitFreeSurface=.TRUE.,'
205 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
206 WRITE(msgBuf,'(A)') '> rigidLid=.FALSE.,'
207 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
208 WRITE(msgBuf,'(A)') '> GMmaxSlope=1.d-2,'
209 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
210 WRITE(msgBuf,'(A)') '> GMlength=200.d3,'
211 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
212 WRITE(msgBuf,'(A)') '> GMalpha=200.d3,'
213 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
214 WRITE(msgBuf,'(A)') '> GMdepth=1000.,'
215 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
216 WRITE(msgBuf,'(A)') '> GMkBackground=0.,'
217 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
218 WRITE(msgBuf,'(A)') '>/ '
219 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
220
221 WRITE(msgBuf,'(A)') '># '
222 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
223 WRITE(msgBuf,'(A)') '># o Elliptic solver parameters'
224 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
225 WRITE(msgBuf,'(A)') '># cg2dMaxIters - Maximum number of 2d '
226 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
227 WRITE(msgBuf,'(A)') '># solver iterations. '
228 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
229 WRITE(msgBuf,'(A)') '># cg2dChkReqFreq - Frequency solver tests '
230 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
231 WRITE(msgBuf,'(A)') '># convergence. '
232 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
233 WRITE(msgBuf,'(A)') '># cg2dTargetResidual - Solver target'
234 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
235 WRITE(msgBuf,'(A)') '># residual. '
236 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
237 WRITE(msgBuf,'(A)') '>&PARM02'
238 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
239 WRITE(msgBuf,'(A)') '> cg2dMaxIters=200,'
240 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
241 WRITE(msgBuf,'(A)') '> cg2dChkResFreq=5,'
242 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
243 WRITE(msgBuf,'(A)') '> cg2dTargetResidual=1.e-7,'
244 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
245 WRITE(msgBuf,'(A)') '>/ '
246 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
247
248 WRITE(msgBuf,'(A)') '># '
249 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
250 WRITE(msgBuf,'(A)') '># o Timestepping parameters'
251 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
252 WRITE(msgBuf,'(A)') '># nIter0 - Start timestep index'
253 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
254 WRITE(msgBuf,'(A)') '># nTimeSteps - Number of timesteps in run.'
255 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
256 WRITE(msgBuf,'(A)') '># delT - Timestep ( s ).'
257 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
258 WRITE(msgBuf,'(A)') '># deltaTtracer - Tracer timestep ( s ).'
259 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
260 WRITE(msgBuf,'(A)') '># abEps - Adams-Bashforth stabilising '
261 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
262 WRITE(msgBuf,'(A)') '># factor. '
263 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
264 WRITE(msgBuf,'(A)') '># tauCD - CD scheme coupling timescale (s)'
265 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
266 WRITE(msgBuf,'(A)') '># startTime - Integration starting time (s)'
267 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
268 WRITE(msgBuf,'(A)') '># endTime - Integration ending time (s)'
269 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
270 WRITE(msgBuf,'(A)') '># cAdjFreq - Convective adjustment period (s)'
271 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
272 WRITE(msgBuf,'(A)') '># chkPtFreq - Frequency at which check '
273 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
274 WRITE(msgBuf,'(A)') '># pointing is done ( s ). '
275 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
276 WRITE(msgBuf,'(A)') '># dumpFreq - Frequency at which model '
277 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
278 WRITE(msgBuf,'(A)') '># state is stored ( s ). '
279 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
280 WRITE(msgBuf,'(A)') '>&PARM03'
281 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
282 WRITE(msgBuf,'(A)') '> nIter0=0'
283 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
284 WRITE(msgBuf,'(A)') '> nTimeSteps=5000'
285 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
286 WRITE(msgBuf,'(A)') '> delT=3600.'
287 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
288 WRITE(msgBuf,'(A)') '> deltaTtracer=3600.'
289 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
290 WRITE(msgBuf,'(A)') '> abEps=0.1'
291 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
292 WRITE(msgBuf,'(A)') '> tauCD=345600.'
293 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
294 WRITE(msgBuf,'(A)') '> startTime=0.,'
295 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
296 WRITE(msgBuf,'(A)') '> endTime=31104000.,'
297 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
298 WRITE(msgBuf,'(A)') '> chkPtFreq=864000.,'
299 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
300 WRITE(msgBuf,'(A)') '> dumpFreq=2592000.,'
301 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
302 WRITE(msgBuf,'(A)') '> cAdjFreq=86400.,'
303 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
304 WRITE(msgBuf,'(A)') '>/ '
305 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
306
307 WRITE(msgBuf,'(A)') '># '
308 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
309 WRITE(msgBuf,'(A)') '># o Gridding parameters'
310 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
311 WRITE(msgBuf,'(A)') '># l - Global domain grid-points in X'
312 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
313 WRITE(msgBuf,'(A)') '># m - Global domain grid-points in Y'
314 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
315 WRITE(msgBuf,'(A)') '># n - Grid-points in Z'
316 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
317 WRITE(msgBuf,'(A)') '># usingSphericalPolarGrid - On/Off flag for'
318 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
319 WRITE(msgBuf,'(A)') '># selecting spherical polar coordinates'
320 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
321 WRITE(msgBuf,'(A)') '># usingCartesianGrid - On/Off flag for'
322 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
323 WRITE(msgBuf,'(A)') '># selecting cartesian coordinates'
324 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
325 WRITE(msgBuf,'(A)') '># delX - Zonal grid spacing. Degrees'
326 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
327 WRITE(msgBuf,'(A)') '># for spherical polar and m for'
328 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
329 WRITE(msgBuf,'(A)') '># cartesian. A value for each point'
330 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
331 WRITE(msgBuf,'(A)') '># in X can be specified.'
332 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
333 WRITE(msgBuf,'(A)') '># delY - Meridional grid spacing. Degrees'
334 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
335 WRITE(msgBuf,'(A)') '># for spherical polar and m for'
336 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
337 WRITE(msgBuf,'(A)') '># cartesian. A value for each point'
338 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
339 WRITE(msgBuf,'(A)') '># in Y can be specified.'
340 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
341 WRITE(msgBuf,'(A)') '># delZ - Vertical grid spacing (m).'
342 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
343 WRITE(msgBuf,'(A)') '># delP - Vertical grid spacing (Pa).'
344 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
345 WRITE(msgBuf,'(A)') '># phiMin - Southern boundary latitude'
346 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
347 WRITE(msgBuf,'(A)') '># (spherical polar grid). '
348 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
349 WRITE(msgBuf,'(A)') '># rSphere- Radius of globe '
350 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
351 WRITE(msgBuf,'(A)') '># (spherical polar grid). '
352 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
353 WRITE(msgBuf,'(A)') '>&PARM04'
354 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
355 WRITE(msgBuf,'(A)') '> n=20,'
356 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
357 WRITE(msgBuf,'(A)') '> l=122,'
358 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
359 WRITE(msgBuf,'(A)') '> m=86,'
360 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
361 WRITE(msgBuf,'(A)') '> usingSphericalPolarGrid=.TRUE.,'
362 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
363 WRITE(msgBuf,'(A)') '> usingCartesianGrid=.FALSE.,'
364 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
365 WRITE(msgBuf,'(A)') '> delx=1.,'
366 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
367 WRITE(msgBuf,'(A)') '> dely=1.,'
368 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
369 WRITE(msgBuf,'(A)') '> delz= 100., 100., 100., 100., 100.,'
370 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
371 WRITE(msgBuf,'(A)') '> 100., 100., 100., 100., 100.,'
372 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
373 WRITE(msgBuf,'(A)') '> 100., 100., 100., 100., 100.,'
374 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
375 WRITE(msgBuf,'(A)') '> 100., 100., 100., 100., 100.,'
376 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
377 WRITE(msgBuf,'(A)') '> phiMin=-80.,'
378 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
379 WRITE(msgBuf,'(A)') '> rSphere=6430.E3'
380 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
381 WRITE(msgBuf,'(A)') '>/ '
382 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
383
384 WRITE(msgBuf,'(A)') '># Note: Some systems use & as the '
385 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
386 WRITE(msgBuf,'(A)') '># namelist terminator. Other systems'
387 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
388 WRITE(msgBuf,'(A)') '># use a / character (as shown here).'
389 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
390 WRITE(msgBuf,'(A)') ' '
391 CALL PRINT_MESSAGE( msgBuf,standardMessageUnit,SQUEEZE_RIGHT,1)
392 C
393 RETURN
394 END
395

  ViewVC Help
Powered by ViewVC 1.1.22