/[MITgcm]/MITgcm/model/src/ini_spherical_polar_grid.F
ViewVC logotype

Annotation of /MITgcm/model/src/ini_spherical_polar_grid.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.12 - (hide annotations) (download)
Wed Dec 9 16:11:52 1998 UTC (25 years, 5 months ago) by adcroft
Branch: MAIN
CVS Tags: checkpoint19
Changes since 1.11: +2 -1 lines
Added IMPLICIT NONE in a lot of subroutines.
Also corrected the recip_Rhonil bug: we didn't set it in ini_parms.F

1 adcroft 1.12 C $Header: /u/gcmpack/models/MITgcmUV/model/src/ini_spherical_polar_grid.F,v 1.11 1998/11/30 23:45:25 adcroft Exp $
2 cnh 1.1
3 cnh 1.10 #include "CPP_OPTIONS.h"
4 cnh 1.1
5     CStartOfInterface
6     SUBROUTINE INI_SPHERICAL_POLAR_GRID( myThid )
7     C /==========================================================\
8     C | SUBROUTINE INI_SPHERICAL_POLAR_GRID |
9     C | o Initialise model coordinate system |
10     C |==========================================================|
11     C | These arrays are used throughout the code in evaluating |
12     C | gradients, integrals and spatial avarages. This routine |
13     C | is called separately by each thread and initialise only |
14     C | the region of the domain it is "responsible" for. |
15     C | Notes: |
16     C | Two examples are included. One illustrates the |
17     C | initialisation of a cartesian grid. The other shows the |
18     C | inialisation of a spherical polar grid. Other orthonormal|
19     C | grids can be fitted into this design. In this case |
20     C | custom metric terms also need adding to account for the |
21     C | projections of velocity vectors onto these grids. |
22     C | The structure used here also makes it possible to |
23     C | implement less regular grid mappings. In particular |
24     C | o Schemes which leave out blocks of the domain that are |
25     C | all land could be supported. |
26     C | o Multi-level schemes such as icosohedral or cubic |
27     C | grid projections onto a sphere can also be fitted |
28     C | within the strategy we use. |
29     C | Both of the above also require modifying the support |
30     C | routines that map computational blocks to simulation |
31     C | domain blocks. |
32     C | Under the spherical polar grid mode primitive distances |
33     C | in X and Y are in degrees. Distance in Z are in m or Pa |
34     C | depending on the vertical gridding mode. |
35     C \==========================================================/
36 adcroft 1.12 IMPLICIT NONE
37 cnh 1.1
38     C === Global variables ===
39     #include "SIZE.h"
40     #include "EEPARAMS.h"
41     #include "PARAMS.h"
42     #include "GRID.h"
43    
44     C == Routine arguments ==
45     C myThid - Number of this instance of INI_CARTESIAN_GRID
46     INTEGER myThid
47     CEndOfInterface
48    
49     C == Local variables ==
50     C xG, yG - Global coordinate location.
51     C zG
52     C xBase - South-west corner location for process.
53     C yBase
54     C zUpper - Work arrays for upper and lower
55     C zLower cell-face heights.
56     C phi - Temporary scalar
57     C iG, jG - Global coordinate index. Usually used to hold
58     C the south-west global coordinate of a tile.
59     C bi,bj - Loop counters
60     C zUpper - Temporary arrays holding z coordinates of
61     C zLower upper and lower faces.
62     C xBase - Lower coordinate for this threads cells
63     C yBase
64     C lat, latN, - Temporary variables used to hold latitude
65     C latS values.
66     C I,J,K
67     _RL xG, yG, zG
68     _RL phi
69 cnh 1.8 _RL zUpper(Nr), zLower(Nr)
70 cnh 1.1 _RL xBase, yBase
71     INTEGER iG, jG
72     INTEGER bi, bj
73     INTEGER I, J, K
74     _RL lat, latS, latN
75    
76     C-- Example of inialisation for spherical polar grid
77     C-- First set coordinates of cell centers
78     C This operation is only performed at start up so for more
79     C complex configurations it is usually OK to pass iG, jG to a custom
80     C function and have it return xG and yG.
81     C Set up my local grid first
82     C Note: In the spherical polar case delX and delY are given in
83     C degrees and are relative to some starting latitude and
84     C longitude - phiMin and thetaMin.
85 cnh 1.5 xC0 = thetaMin
86     yC0 = phiMin
87 cnh 1.1 DO bj = myByLo(myThid), myByHi(myThid)
88     jG = myYGlobalLo + (bj-1)*sNy
89     DO bi = myBxLo(myThid), myBxHi(myThid)
90     iG = myXGlobalLo + (bi-1)*sNx
91     yBase = phiMin
92     xBase = thetaMin
93     DO i=1,iG-1
94     xBase = xBase + delX(i)
95     ENDDO
96     DO j=1,jG-1
97     yBase = yBase + delY(j)
98     ENDDO
99     yG = yBase
100     DO J=1,sNy
101     xG = xBase
102     DO I=1,sNx
103     xc(I,J,bi,bj) = xG + delX(iG+i-1)*0.5 _d 0
104     yc(I,J,bi,bj) = yG + delY(jG+j-1)*0.5 _d 0
105     xG = xG + delX(iG+I-1)
106 cnh 1.10 dxF(I,J,bi,bj) = delX(iG+i-1)*deg2rad
107     & *rSphere*COS(yc(I,J,bi,bj)*deg2rad)
108 cnh 1.1 dyF(I,J,bi,bj) = delY(jG+j-1)*deg2rad*rSphere
109     ENDDO
110     yG = yG + delY(jG+J-1)
111     ENDDO
112     ENDDO
113     ENDDO
114     C Now sync. and get edge regions from other threads and/or processes.
115     C Note: We could just set the overlap regions ourselves here but
116     C exchanging edges is safer and is good practice!
117     _EXCH_XY_R4( xc, myThid )
118     _EXCH_XY_R4( yc, myThid )
119     _EXCH_XY_R4(dxF, myThid )
120     _EXCH_XY_R4(dyF, myThid )
121    
122     C-- Calculate separation between other points
123     C dxG, dyG are separations between cell corners along cell faces.
124     DO bj = myByLo(myThid), myByHi(myThid)
125     DO bi = myBxLo(myThid), myBxHi(myThid)
126     DO J=1,sNy
127     DO I=1,sNx
128     jG = myYGlobalLo + (bj-1)*sNy + J-1
129     iG = myXGlobalLo + (bi-1)*sNx + I-1
130     lat = yc(I,J,bi,bj)-delY(jG) * 0.5 _d 0
131     dxG(I,J,bi,bj) = rSphere*COS(lat*deg2rad)*delX(iG)*deg2rad
132     dyG(I,J,bi,bj) = (dyF(I,J,bi,bj)+dyF(I-1,J,bi,bj))*0.5 _d 0
133     ENDDO
134     ENDDO
135     ENDDO
136     ENDDO
137     _EXCH_XY_R4(dxG, myThid )
138     _EXCH_XY_R4(dyG, myThid )
139 adcroft 1.11 C dxC, dyC is separation between cell centers
140 cnh 1.1 DO bj = myByLo(myThid), myByHi(myThid)
141     DO bi = myBxLo(myThid), myBxHi(myThid)
142     DO J=1,sNy
143     DO I=1,sNx
144 adcroft 1.11 dxC(I,J,bi,bj) = (dxF(I,J,bi,bj)+dxF(I-1,J,bi,bj))*0.5 _d 0
145     dyC(I,J,bi,bj) = (dyF(I,J,bi,bj)+dyF(I,J-1,bi,bj))*0.5 _d 0
146 cnh 1.1 ENDDO
147     ENDDO
148     ENDDO
149     ENDDO
150 adcroft 1.11 _EXCH_XY_R4(dxC, myThid )
151     _EXCH_XY_R4(dyC, myThid )
152     C dxV, dyU are separations between velocity points along cell faces.
153 cnh 1.1 DO bj = myByLo(myThid), myByHi(myThid)
154     DO bi = myBxLo(myThid), myBxHi(myThid)
155     DO J=1,sNy
156     DO I=1,sNx
157 adcroft 1.11 dxV(I,J,bi,bj) = (dxG(I,J,bi,bj)+dxG(I-1,J,bi,bj))*0.5 _d 0
158     #ifdef OLD_UV_GEOMETRY
159     dyU(I,J,bi,bj) = (dyG(I,J,bi,bj)+dyG(I,J-1,bi,bj))*0.5 _d 0
160     #else
161     dyU(I,J,bi,bj) = (dyC(I,J,bi,bj)+dyC(I-1,J,bi,bj))*0.5 _d 0
162     #endif
163 cnh 1.1 ENDDO
164     ENDDO
165     ENDDO
166     ENDDO
167 adcroft 1.11 _EXCH_XY_R4(dxV, myThid )
168     _EXCH_XY_R4(dyU, myThid )
169 adcroft 1.6 C Calculate vertical face area and trigonometric terms
170 cnh 1.1 DO bj = myByLo(myThid), myByHi(myThid)
171     DO bi = myBxLo(myThid), myBxHi(myThid)
172     DO J=1,sNy
173     DO I=1,sNx
174     jG = myYGlobalLo + (bj-1)*sNy + J-1
175     latS = yc(i,j,bi,bj)-delY(jG)*0.5 _d 0
176     latN = yc(i,j,bi,bj)+delY(jG)*0.5 _d 0
177 adcroft 1.11 #ifdef OLD_UV_GEOMETRY
178 cnh 1.8 rA(I,J,bi,bj) = dyF(I,J,bi,bj)
179 cnh 1.1 & *rSphere*(SIN(latN*deg2rad)-SIN(latS*deg2rad))
180 adcroft 1.11 #else
181     rA(I,J,bi,bj) = rSphere*delX(iG)*deg2rad
182     & *rSphere*(SIN(latN*deg2rad)-SIN(latS*deg2rad))
183     #endif
184 cnh 1.10 C Area cannot be zero but sin can be if lat if < -90.
185     IF ( rA(I,J,bi,bj) .LT. 0. ) rA(I,J,bi,bj) = -rA(I,J,bi,bj)
186 adcroft 1.6 tanPhiAtU(i,j,bi,bj)=tan(_yC(i,j,bi,bj)*deg2rad)
187     tanPhiAtV(i,j,bi,bj)=tan(latS*deg2rad)
188 cnh 1.1 ENDDO
189     ENDDO
190     ENDDO
191     ENDDO
192 cnh 1.8 _EXCH_XY_R4 (rA , myThid )
193 cnh 1.5 _EXCH_XY_R4 (tanPhiAtU , myThid )
194     _EXCH_XY_R4 (tanPhiAtV , myThid )
195 adcroft 1.11 DO bj = myByLo(myThid), myByHi(myThid)
196     DO bi = myBxLo(myThid), myBxHi(myThid)
197     DO J=1,sNy
198     DO I=1,sNx
199     iG = myXGlobalLo + (bi-1)*sNx + I-1
200     jG = myYGlobalLo + (bj-1)*sNy + J-1
201     latS = yc(i,j-1,bi,bj)
202     latN = yc(i,j,bi,bj)
203     #ifdef OLD_UV_GEOMETRY
204     rAw(I,J,bi,bj) = 0.5*(rA(I,J,bi,bj)+rA(I-1,J,bi,bj))
205     rAs(I,J,bi,bj) = 0.5*(rA(I,J,bi,bj)+rA(I,J-1,bi,bj))
206     #else
207     rAw(I,J,bi,bj) = 0.5*(rA(I,J,bi,bj)+rA(I-1,J,bi,bj))
208     rAs(I,J,bi,bj) = rSphere*delX(iG)*deg2rad
209     & *rSphere*(SIN(latN*deg2rad)-SIN(latS*deg2rad))
210     #endif
211     ENDDO
212     ENDDO
213     ENDDO
214     ENDDO
215     _EXCH_XY_R4 (rAw , myThid )
216     _EXCH_XY_R4 (rAs , myThid )
217 cnh 1.1 C
218     RETURN
219     END

  ViewVC Help
Powered by ViewVC 1.1.22