/[MITgcm]/MITgcm/model/src/ini_p_ground.F
ViewVC logotype

Contents of /MITgcm/model/src/ini_p_ground.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.5 - (show annotations) (download)
Wed Feb 26 03:11:32 2003 UTC (21 years, 2 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint51k_post, checkpoint57m_post, checkpoint52l_pre, hrcube4, hrcube5, checkpoint57g_pre, checkpoint50c_post, checkpoint57s_post, checkpoint57b_post, checkpoint52d_pre, checkpoint57g_post, checkpoint56b_post, checkpoint50c_pre, checkpoint52j_pre, checkpoint51o_pre, checkpoint54d_post, checkpoint54e_post, checkpoint51l_post, checkpoint48i_post, checkpoint57r_post, checkpoint57d_post, checkpoint57i_post, checkpoint52l_post, checkpoint52k_post, checkpoint55, checkpoint54, checkpoint57, checkpoint56, checkpoint51, checkpoint50, checkpoint53, checkpoint52, checkpoint50d_post, checkpoint52f_post, checkpoint57n_post, checkpoint50b_pre, checkpoint54f_post, checkpoint51f_post, checkpoint51d_post, checkpoint51t_post, checkpoint51n_post, checkpoint55i_post, checkpoint57l_post, checkpoint52i_pre, hrcube_1, hrcube_2, hrcube_3, checkpoint51s_post, checkpoint57t_post, checkpoint55c_post, checkpoint51j_post, checkpoint52e_pre, checkpoint57v_post, checkpoint57f_post, checkpoint52e_post, checkpoint51n_pre, checkpoint53d_post, checkpoint57a_post, checkpoint57h_pre, checkpoint52b_pre, checkpoint54b_post, checkpoint57h_post, checkpoint51l_pre, checkpoint52m_post, checkpoint55g_post, checkpoint48h_post, checkpoint51q_post, checkpoint51b_pre, checkpoint52b_post, checkpoint52c_post, checkpoint51h_pre, checkpoint57c_post, checkpoint50f_post, checkpoint50a_post, checkpoint50f_pre, checkpoint52f_pre, checkpoint55d_post, checkpoint54a_pre, checkpoint53c_post, checkpoint55d_pre, checkpoint57c_pre, checkpoint55j_post, branchpoint-genmake2, checkpoint54a_post, checkpoint55h_post, checkpoint51r_post, checkpoint51i_post, checkpoint57e_post, checkpoint55b_post, checkpoint51b_post, checkpoint51c_post, checkpoint53a_post, checkpoint55f_post, checkpoint52d_post, checkpoint53g_post, checkpoint57p_post, checkpint57u_post, checkpoint50g_post, checkpoint57q_post, eckpoint57e_pre, checkpoint52a_pre, checkpoint50h_post, checkpoint52i_post, checkpoint50e_pre, checkpoint50i_post, checkpoint51i_pre, checkpoint52h_pre, checkpoint56a_post, checkpoint53f_post, checkpoint57h_done, checkpoint52j_post, checkpoint50e_post, checkpoint57j_post, checkpoint57f_pre, branch-netcdf, checkpoint50d_pre, checkpoint52n_post, checkpoint53b_pre, checkpoint56c_post, checkpoint51e_post, checkpoint57a_pre, checkpoint55a_post, checkpoint49, checkpoint57o_post, checkpoint51o_post, checkpoint57k_post, checkpoint51f_pre, checkpoint53b_post, checkpoint52a_post, checkpoint57w_post, checkpoint51g_post, ecco_c52_e35, checkpoint57x_post, checkpoint50b_post, checkpoint51m_post, checkpoint53d_pre, checkpoint55e_post, checkpoint54c_post, checkpoint51a_post, checkpoint51p_post, checkpoint51u_post
Branch point for: branch-genmake2, branch-nonh, tg2-branch, netcdf-sm0, checkpoint51n_branch
Changes since 1.4: +124 -51 lines
improve definition of Po_surf when using Finite Volume form to integrate
  PhiHyd and (standard) vertical grid (Center at middle).

1 C $Header: /u/gcmpack/MITgcm/model/src/ini_p_ground.F,v 1.4 2002/12/10 02:55:47 jmc Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5 #undef CHECK_ANALYLIC_THETA
6
7 CBOP
8 C !ROUTINE: INI_P_GROUND
9 C !INTERFACE:
10 SUBROUTINE INI_P_GROUND(selectMode,
11 & Hfld, Pfld,
12 I myThid )
13 C !DESCRIPTION: \bv
14 C *==========================================================*
15 C | SUBROUTINE INI_P_GROUND
16 C | o Convert Topography [m] to (reference) Surface Pressure
17 C | according to tRef profile,
18 C | using same discretisation as in calc_phi_hyd
19 C |
20 C *==========================================================*
21 C \ev
22
23 C !USES:
24 IMPLICIT NONE
25 C == Global variables ==
26 #include "SIZE.h"
27 #include "GRID.h"
28 #include "EEPARAMS.h"
29 #include "PARAMS.h"
30 #include "SURFACE.h"
31
32 C !INPUT/OUTPUT PARAMETERS:
33 C == Routine arguments ==
34 C selectMode :: > 0 = find Pfld from Hfld ; < 0 = compute Hfld from Pfld
35 C selectFindRoSurf = 0 : use Theta_Ref profile
36 C selectFindRoSurf = 1 : use analytic fct Theta(Lat,P)
37 C Hfld (input/outp) :: Ground elevation [m]
38 C Pfld (outp/input) :: reference Pressure at the ground [Pa]
39 INTEGER selectMode
40 _RS Hfld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
41 _RS Pfld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
42 INTEGER myThid
43
44 C !LOCAL VARIABLES:
45 C == Local variables ==
46 C msgBuf :: Informational/error meesage buffer
47 C-
48 C For an accurate definition of the reference surface pressure,
49 C define a High vertical resolution (in P):
50 C nLevHvR :: Number of P-level used for High vertical Resolution (HvR)
51 C plowHvR :: Lower bound of the High vertical Resolution
52 C dpHvR :: normalized pressure increment (HvR)
53 C pLevHvR :: normalized P-level of the High vertical Resolution
54 C pMidHvR :: normalized mid point level (HvR)
55 C thetaHvR :: potential temperature at mid point level (HvR)
56 C PiHvR :: Exner function at P-level
57 C dPiHvR :: Exner function difference between 2 P-levels
58 C recip_kappa :: 1/kappa = Cp/R
59 C PiLoc, zLoc, dzLoc, yLatLoc, phiLoc :: hold on temporary values
60 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
61 CHARACTER*(MAX_LEN_MBUF) msgBuf
62 INTEGER bi,bj,i,j,K, Ks
63 _RL ddPI, Po_surf
64 _RL phiRef(2*Nr+1), rHalf(2*Nr+1)
65 LOGICAL findPoSurf
66
67 INTEGER nLevHvR
68 PARAMETER ( nLevHvR = 60 )
69 _RL plowHvR, dpHvR, pLevHvR(nLevHvR+1), pMidHvR(nLevHvR)
70 _RL thetaHvR(nLevHvR), PiHvR(nLevHvR+1), dPiHvR(nLevHvR)
71 _RL recip_kappa, PiLoc, zLoc, dzLoc, yLatLoc, phiLoc
72 _RL psNorm, rMidKp1
73 _RL ratioRm(Nr), ratioRp(Nr)
74 INTEGER kLev
75 #ifdef CHECK_ANALYLIC_THETA
76 _RL tmpVar(nLevHvR,61)
77 #endif
78 CEOP
79
80 IF ( selectFindRoSurf.LT.0 .OR. selectFindRoSurf.GT.1 ) THEN
81 WRITE(msgBuf,'(A,I2,A)')
82 & 'INI_P_GROUND: selectFindRoSurf =', selectFindRoSurf,
83 & ' <== bad value !'
84 CALL PRINT_ERROR( msgBuf , myThid)
85 STOP 'INI_P_GROUND'
86 ENDIF
87
88 DO K=1,Nr
89 rHalf(2*K-1) = rF(K)
90 rHalf(2*K) = rC(K)
91 ENDDO
92 rHalf(2*Nr+1) = rF(Nr+1)
93
94 IF (selectMode*selectFindRoSurf .LE. 0) THEN
95 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
96 C- Compute Reference Geopotential at Half levels :
97 C Tracer level: phiRef(2K) ; Interface_W level: phiRef(2K+1)
98
99 phiRef(1) = 0.
100
101 IF (integr_GeoPot.EQ.1) THEN
102 C- Finite Volume Form, linear by half level :
103 DO K=1,2*Nr
104 Ks = (K+1)/2
105 ddPI=atm_Cp*( ((rHalf( K )/atm_Po)**atm_kappa)
106 & -((rHalf(K+1)/atm_Po)**atm_kappa) )
107 phiRef(K+1) = phiRef(K)+ddPI*tRef(Ks)
108 ENDDO
109 C------
110 ELSE
111 C- Finite Difference Form, linear between Tracer level :
112 C works with integr_GeoPot = 0, 2 or 3
113 K = 1
114 ddPI=atm_Cp*( ((rF(K)/atm_Po)**atm_kappa)
115 & -((rC(K)/atm_Po)**atm_kappa) )
116 phiRef(2*K) = phiRef(1) + ddPI*tRef(K)
117 DO K=1,Nr-1
118 ddPI=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)
119 & -((rC(K+1)/atm_Po)**atm_kappa) )
120 phiRef(2*K+1) = phiRef(2*K) + ddPI*0.5*tRef(K)
121 phiRef(2*K+2) = phiRef(2*K)
122 & + ddPI*0.5*(tRef(K)+tRef(K+1))
123 ENDDO
124 K = Nr
125 ddPI=atm_Cp*( ((rC( K )/atm_Po)**atm_kappa)
126 & -((rF(K+1)/atm_Po)**atm_kappa) )
127 phiRef(2*K+1) = phiRef(2*K) + ddPI*tRef(K)
128 C------
129 ENDIF
130
131 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
132
133 C- Convert phiRef to Z unit :
134 DO K=1,2*Nr+1
135 phiRef(K) = phiRef(K)*recip_gravity
136 ENDDO
137
138 _BEGIN_MASTER( myThid )
139 C- Write to check :
140 WRITE(standardMessageUnit,'(2A)')
141 & 'INI_P_GROUND: PhiRef/g [m] at Center (integer) ',
142 & 'and Interface (half-int.) levels:'
143 DO K=1,2*Nr+1
144 WRITE(standardMessageUnit,'(A,F5.1,A,F10.1,A,F12.3)')
145 & ' K=',K*0.5,' ; r=',rHalf(K),' ; phiRef/g=', phiRef(K)
146 ENDDO
147 _END_MASTER( myThid )
148
149 C-- endif selectMode*selectFindRoSurf =< 0
150 ENDIF
151
152 IF (selectFindRoSurf.EQ.0 .AND. selectMode .GT. 0 ) THEN
153 C- Find Po_surf : Linear between 2 half levels :
154 DO bj = myByLo(myThid), myByHi(myThid)
155 DO bi = myBxLo(myThid), myBxHi(myThid)
156 DO j=1,sNy
157 DO i=1,sNx
158 Ks = 1
159 DO K=1,2*Nr
160 IF (Hfld(i,j,bi,bj).GE.phiRef(K)) Ks = K
161 ENDDO
162 Po_surf = rHalf(Ks) + (rHalf(Ks+1)-rHalf(Ks))*
163 & (Hfld(i,j,bi,bj)-phiRef(Ks))/(phiRef(Ks+1)-phiRef(Ks))
164
165 c IF (Hfld(i,j,bi,bj).LT.phiRef(1)) Po_surf= rHalf(1)
166 c IF (Hfld(i,j,bi,bj).GT.phiRef(2*Nr+1)) Po_surf=rHalf(2*Nr+1)
167 Pfld(i,j,bi,bj) = Po_surf
168 ENDDO
169 ENDDO
170 ENDDO
171 ENDDO
172
173 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
174 C-- endif selectFindRoSurf=0 & selectMode > 0
175 ENDIF
176
177 IF ( selectFindRoSurf.EQ.1 ) THEN
178 C-- define high resolution Pressure discretization:
179
180 recip_kappa = 1. _d 0 / atm_kappa
181 plowHvR = 0.4 _d 0
182 dpHvR = nLevHvR
183 dpHvR = (1. - plowHvR) / dpHvR
184 pLevHvR(1)= Ro_SeaLevel/atm_Po
185 PiHvR(1) = atm_Cp*(pLevHvR(1)**atm_kappa)
186 DO k=1,nLevHvR
187 pLevHvR(k+1)= pLevHvR(1) - float(k)*dpHvR
188 PiHvR(k+1) = atm_Cp*(pLevHvR(k+1)**atm_kappa)
189 pMidHvR(k)= (pLevHvR(k)+pLevHvR(k+1))*0.5 _d 0
190 dPiHvR(k) = PiHvR(k) - PiHvR(k+1)
191 ENDDO
192
193 C-- to modify pressure when using non fully linear relation between Phi & p
194 C (Integr_GeoPot=2 & Tracer Point at middle between 2 interfaces)
195 DO k=1,Nr
196 ratioRm(k) = 1. _d 0
197 ratioRp(k) = 1. _d 0
198 IF (k.GT.1 ) ratioRm(k) = 0.5 _d 0*drC(k)/(rF(k)-rC(k))
199 IF (k.LT.Nr) ratioRp(k) = 0.5 _d 0*drC(k+1)/(rC(k)-rF(k+1))
200 ENDDO
201
202 #ifdef CHECK_ANALYLIC_THETA
203 _BEGIN_MASTER( mythid )
204 DO j=1,61
205 yLatLoc =-90.+(j-1)*3.
206 CALL ANALYLIC_THETA( yLatLoc , pMidHvR,
207 & tmpVar(1,j), nLevHvR, mythid)
208 ENDDO
209 OPEN(88,FILE='analytic_theta',
210 & STATUS='unknown',FORM='unformatted')
211 WRITE(88) tmpVar
212 CLOSE(88)
213 _END_MASTER( mythid )
214 STOP 'CHECK_ANALYLIC_THETA'
215 #endif /* CHECK_ANALYLIC_THETA */
216
217 C-- endif selectFindRoSurf=1
218 ENDIF
219
220 IF ( selectFindRoSurf*selectMode .GT. 0) THEN
221 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
222 C- Find Po_surf such as g*Hfld = Phi[Po_surf,theta(yLat,p)]:
223
224 DO bj = myByLo(myThid), myByHi(myThid)
225 DO bi = myBxLo(myThid), myBxHi(myThid)
226 C- start bi,bj loop:
227
228 DO j=1,sNy
229 DO i=1,sNx
230 IF ( Hfld(i,j,bi,bj) .LE. 0. _d 0) THEN
231 Pfld(i,j,bi,bj) = Ro_SeaLevel
232 ELSE
233 yLatLoc = yC(i,j,bi,bj)
234 CALL ANALYLIC_THETA( yLatLoc , pMidHvR,
235 & thetaHvR, nLevHvR, mythid)
236 zLoc = 0.
237 DO k=1,nLevHvR
238 IF (zLoc.GE.0.) THEN
239 C- compute phi/g corresponding to next p_level:
240 dzLoc = dPiHvR(k)*thetaHvR(k)*recip_gravity
241 IF ( Hfld(i,j,bi,bj) .LE. zLoc+dzLoc ) THEN
242 C- compute the normalized surf. Pressure psNorm
243 PiLoc = PiHvR(k)
244 & - gravity*(Hfld(i,j,bi,bj)-zLoc)/thetaHvR(k)
245 psNorm = (PiLoc/atm_Cp)**recip_kappa
246 C- use linear interpolation:
247 c psNorm = pLevHvR(k)
248 c & - dpHvR*(Hfld(i,j,bi,bj)-zLoc)/dzLoc
249 zLoc = -1.
250 ELSE
251 zLoc = zLoc + dzLoc
252 ENDIF
253 ENDIF
254 ENDDO
255 IF (zLoc.GE.0.) THEN
256 WRITE(msgBuf,'(2A)')
257 & 'INI_P_GROUND: FAIL in trying to find Pfld:',
258 & ' selectMode,i,j,bi,bj=',selectMode,i,j,bi,bj
259 CALL PRINT_ERROR( msgBuf , myThid)
260 WRITE(msgBuf,'(A,F7.1,2A,F6.4,A,F8.0)')
261 & 'INI_P_GROUND: Hfld=', Hfld(i,j,bi,bj), ' exceeds',
262 & ' Zloc(lowest P=', pLevHvR(1+nLevHvR),' )=',zLoc
263 CALL PRINT_ERROR( msgBuf , myThid)
264 STOP 'ABNORMAL END: S/R INI_P_GROUND'
265 ELSE
266 Pfld(i,j,bi,bj) = psNorm*atm_Po
267 ENDIF
268 ENDIF
269 ENDDO
270 ENDDO
271
272 IF (selectMode.EQ.2 .AND. integr_GeoPot.NE.1) THEN
273 C---------
274 C Modify pressure to account for non fully linear relation between
275 C Phi & p (due to numerical truncation of the Finite Difference scheme)
276 C---------
277 DO j=1,sNy
278 DO i=1,sNx
279 Po_surf = Pfld(i,j,bi,bj)
280 IF ( Po_surf.LT.rC(1) .AND. Po_surf.GT.rC(Nr) ) THEN
281 findPoSurf = .TRUE.
282 DO k=1,Nr
283 IF ( findPoSurf .AND. Po_surf.GE.rC(k) ) THEN
284 Po_surf = rC(k) + (Po_surf-rC(k))/ratioRm(k)
285 findPoSurf = .FALSE.
286 ENDIF
287 rMidKp1 = rF(k+1)
288 IF (k.LT.Nr) rMidKp1 = (rC(k)+rC(k+1))*0.5 _d 0
289 IF ( findPoSurf .AND. Po_surf.GE.rMidKp1 ) THEN
290 Po_surf = rC(k) + (Po_surf-rC(k))/ratioRp(k)
291 findPoSurf = .FALSE.
292 ENDIF
293 ENDDO
294 IF ( findPoSurf )
295 & STOP 'S/R INI_P_GROUND: Pb with selectMode=2'
296 ENDIF
297 Pfld(i,j,bi,bj) = Po_surf
298 ENDDO
299 ENDDO
300 C---------
301 ENDIF
302
303 C- end bi,bj loop.
304 ENDDO
305 ENDDO
306
307 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
308 C-- endif selectFindRoSurf*selectMode > 0
309 ENDIF
310
311 IF (selectMode .LT. 0) THEN
312 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
313 C--- Compute Hfld = Phi(Pfld)/g.
314
315 DO bj = myByLo(myThid), myByHi(myThid)
316 DO bi = myBxLo(myThid), myBxHi(myThid)
317 C- start bi,bj loop:
318
319 C-- Compute Hfld from g*Hfld = PhiRef(Po_surf)
320 DO j=1,sNy
321 DO i=1,sNx
322 C- compute phiLoc = PhiRef(Ro_surf):
323 ks = ksurfC(i,j,bi,bj)
324 IF (ks.LE.Nr) THEN
325 IF ( Pfld(i,j,bi,bj).GE.rC(ks) ) THEN
326 phiLoc = phiRef(2*ks)
327 & + (phiRef(2*ks-1)-phiRef(2*ks))
328 & *(Pfld(i,j,bi,bj)-rC(ks))/(rHalf(2*ks-1)-rHalf(2*ks))
329 ELSE
330 phiLoc = phiRef(2*ks)
331 & + (phiRef(2*ks+1)-phiRef(2*ks))
332 & *(Pfld(i,j,bi,bj)-rC(ks))/(rHalf(2*ks+1)-rHalf(2*ks))
333 ENDIF
334 Hfld(i,j,bi,bj) = phiLoc
335 ELSE
336 Hfld(i,j,bi,bj) = 0.
337 ENDIF
338 ENDDO
339 ENDDO
340
341 IF (selectFindRoSurf.EQ.1) THEN
342 C-----
343 C goal: evaluate phi0surf (used for computing geopotential'= Phi - PhiRef):
344 C phi0surf = g*Ztopo-PhiRef(Ro_surf) if no truncation was applied to Ro_surf;
345 C but because of hFacMin, surf.ref.pressure (=Ro_surf) is truncated and
346 C phi0surf = Phi(Theta-Analytic,P=Ro_surf) - PhiRef(P=Ro_surf)
347 C-----
348 C-- Compute Hfld from g*Hfld = Phi[Po_surf,theta(yLat,p)]:
349 DO j=1,sNy
350 DO i=1,sNx
351 zLoc = 0.
352 IF ( Pfld(i,j,bi,bj) .LT. Ro_SeaLevel) THEN
353 Po_surf = Pfld(i,j,bi,bj)
354 C---------
355 C Modify pressure to account for non fully linear relation between
356 C Phi & p (due to numerical truncation of the Finite Difference scheme)
357 IF (selectMode.EQ.-2 .AND. integr_GeoPot.NE.1) THEN
358 IF ( Po_surf.LT.rC(1) .AND. Po_surf.GT.rC(Nr) ) THEN
359 findPoSurf = .TRUE.
360 DO k=1,Nr
361 IF ( findPoSurf .AND. Po_surf.GE.rC(k) ) THEN
362 Po_surf = rC(k) + (Po_surf-rC(k))*ratioRm(k)
363 findPoSurf = .FALSE.
364 ENDIF
365 IF ( findPoSurf .AND. Po_surf.GE.rF(k+1) ) THEN
366 Po_surf = rC(k) + (Po_surf-rC(k))*ratioRp(k)
367 findPoSurf = .FALSE.
368 ENDIF
369 ENDDO
370 ENDIF
371 ENDIF
372 C---------
373 psNorm = Po_surf/atm_Po
374 kLev = 1 + INT( (pLevHvR(1)-psNorm)/dpHvR )
375 yLatLoc = yC(i,j,bi,bj)
376 CALL ANALYLIC_THETA( yLatLoc , pMidHvR,
377 & thetaHvR, kLev, mythid)
378 C- compute height at level pLev(kLev) just below Pfld:
379 DO k=1,kLev-1
380 dzLoc = dPiHvR(k)*thetaHvR(k)*recip_gravity
381 zLoc = zLoc + dzLoc
382 ENDDO
383 dzLoc = ( PiHvR(kLev)-atm_Cp*(psNorm**atm_kappa) )
384 & * thetaHvR(kLev)*recip_gravity
385 zLoc = zLoc + dzLoc
386 ENDIF
387 C- compute phi0surf = Phi[Po_surf,theta(yLat,p)] - PhiRef(Po_surf)
388 phi0surf(i,j,bi,bj) = gravity*(zLoc - Hfld(i,j,bi,bj))
389 C- save Phi[Po_surf,theta(yLat,p)] in Hfld (replacing PhiRef(Po_surf)):
390 Hfld(i,j,bi,bj) = zLoc
391 ENDDO
392 ENDDO
393 C- endif selectFindRoSurf=1
394 ENDIF
395
396 C- end bi,bj loop.
397 ENDDO
398 ENDDO
399
400 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
401 C-- endif selectMode < 0
402 ENDIF
403
404 RETURN
405 END
406
407 CBOP
408 C !SUBROUTINE: ANALYLIC_THETA
409 C !INTERFACE:
410 SUBROUTINE ANALYLIC_THETA( yLat, pNlev,
411 O thetaLev,
412 I kSize,myThid)
413
414 C !DESCRIPTION: \bv
415 C *==========================================================*
416 C | SUBROUTINE ANALYLIC_THETA
417 C | o Conpute analyticaly the potential temperature Theta
418 C | as a function of Latitude (yLat) and normalized
419 C | pressure pNlev.
420 C | approximatively match the N-S symetric, zonal-mean and
421 C | annual-mean NCEP climatology in the troposphere.
422 C *==========================================================*
423 C \ev
424
425 C !USES:
426 IMPLICIT NONE
427
428 C == Global variables ==
429 #include "SIZE.h"
430 #include "EEPARAMS.h"
431 #include "PARAMS.h"
432
433 C !INPUT/OUTPUT PARAMETERS:
434 C == Routine arguments ==
435 C yLat :: latitude (degre)
436 C pNlev :: normalized pressure levels
437 C kSize :: dimension of pNlev & ANALYLIC_THETA
438 C myThid :: Thread number for this instance of the routine
439 INTEGER kSize
440 _RL yLat
441 _RL pNlev (kSize)
442 _RL thetaLev(kSize)
443 INTEGER myThid
444
445 C !LOCAL VARIABLES:
446 C == Local variables ==
447 INTEGER k
448 _RL yyA, yyB, yyC, yyAd, yyBd, yyCd
449 _RL cAtmp, cBtmp, ttdC
450 _RL ppN0, ppN1, ppN2, ppN3a, ppN3b, ppN4
451 _RL ttp1, ttp2, ttp3, ttp4, ttp5
452 _RL yAtmp, yBtmp, yCtmp, yDtmp
453 _RL ttp2y, ttp4y, a1tmp
454 _RL ppl, ppm, pph, ppr
455
456 CEOP
457
458 DATA yyA , yyB , yyC , yyAd , yyBd , yyCd
459 & / 45. _d 0, 65. _d 0, 65. _d 0, .9 _d 0, .9 _d 0, 10. _d 0 /
460 DATA cAtmp , cBtmp , ttdC
461 & / 2.6 _d 0, 1.5 _d 0, 3.3 _d 0 /
462 DATA ppN0 , ppN1 , ppN2 , ppN3a , ppN3b , ppN4
463 & / .1 _d 0, .19 _d 0, .3 _d 0, .9 _d 0, .7 _d 0, .925 _d 0 /
464 DATA ttp1 , ttp2 , ttp3 , ttp4 , ttp5
465 & / 350. _d 0, 342. _d 0, 307. _d 0, 301. _d 0, 257. _d 0 /
466
467 C---+----1----+----2----+----3----+----4----+----5----+----6----+----7-|--+----|
468
469 yAtmp = ABS(yLat) - yyA
470 yAtmp = yyA + MIN(0. _d 0,yAtmp/yyAd) + MAX(yAtmp, 0. _d 0)
471 yAtmp = COS( deg2rad*MAX(yAtmp, 0. _d 0) )
472 yBtmp = ABS(yLat) - yyB
473 yBtmp = yyB + yBtmp/yyBd
474 yBtmp = COS( deg2rad*MAX( 0. _d 0, MIN(yBtmp,90. _d 0) ) )
475 yCtmp = ABS(yLat) - yyC
476 yCtmp = MAX( 0. _d 0, 1. _d 0 - (yCtmp/yyCd)**2 )
477 yDtmp = ppN3a +(ppN3b - ppN3a)*yCtmp
478 ttp2y = ttp3 + (ttp2-ttp3)*yAtmp**cAtmp
479 ttp4y = ttp5 + (ttp4-ttp5)*yBtmp**cBtmp
480 a1tmp = (ttp1-ttp2y)*ppN1*ppN2/(ppN2-ppN1)
481 DO k=1,kSize
482 ppl = MIN(pNlev(k),ppN1)
483 ppm = MIN(MAX(pNlev(k),ppN1),ppN2)
484 pph = MAX(pNlev(k),ppN2)
485 ppr =( ppN0 + ABS(ppl-ppN0) - ppN1 )/(ppN2-ppN1)
486 thetaLev(k) =
487 & ( (1. _d 0 -ppr)*ttp1*ppN1**atm_kappa
488 & + ppr*ttp2y*ppN2**atm_kappa
489 & )*ppl**(-atm_kappa)
490 & + a1tmp*(1. _d 0 /ppm - 1. _d 0/ppN1)
491 & + (ttp4y-ttp2y)*(pph-ppN2)/(ppN4-ppN2)
492 & + (ttdC+yCtmp)*MAX(0. _d 0,pNlev(k)-yDtmp)/(1-yDtmp)
493 ENDDO
494
495 C---------------------------------------------------
496 C matlab script, input: pN, yp=abs(yLat)
497 C pN0=.1; pN1=.19 ; pN2=.3; pN4=.925;
498 C pm=min(max(pN,pN1),pN2); pp=max(pN,pN2);
499 C pl=min(pN,pN1); pr=(pN0+abs(pl-pN0)-pN1)/(pN2-pN1);
500 C
501 C yA=yp-45; yA=45+min(0,yA/.9)+max(0,yA); yA=max(0,yA); cosyA=cos(yA*rad) ;
502 C yB=yp-65; yB=65+yB/.9; yB=min(max(0,yB),90); cosyB=cos(yB*rad) ;
503 C tp1=350*ones(nyA,1);
504 C tp2=307+(342-307)*cosyA.^2.6;
505 C tp4=257+(301-257)*cosyB.^1.5;
506 C a1=(tp1-tp2)*pN1*pN2/(pN2-pN1);
507 C pF=max(0,1.-((yp-65)/10).^2); pT=.9+(0.7-.9)*pF;
508 C
509 C tA0=((1-pr(k))*tp1(j)*pN1^kappa+pr(k)*tp2(j)*pN2^kappa)*pl(k)^-kappa;
510 C tA1=a1(j)*(1./pm(k)-1./pN1);
511 C tA2=(tp4(j)-tp2(j))*(pp(k)-pN2)/(pN4-pN2);
512 C tA3=(3.3+pF(j))*max(0,pN(k)-pT(j))/(1-pT(j));
513 C tAn(j,k)=tA0+tA1+tA2+tA3;
514 C---------------------------------------------------
515
516 RETURN
517 END

  ViewVC Help
Powered by ViewVC 1.1.22