/[MITgcm]/MITgcm/model/src/ini_masks_etc.F
ViewVC logotype

Contents of /MITgcm/model/src/ini_masks_etc.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.22 - (show annotations) (download)
Thu Jul 5 21:44:25 2001 UTC (22 years, 11 months ago) by jmc
Branch: MAIN
CVS Tags: checkpoint40pre3, checkpoint40pre7, checkpoint40pre6, checkpoint40pre8, checkpoint40pre2, checkpoint40pre4, checkpoint40pre5
Changes since 1.21: +18 -6 lines
write hFacW and hFacS;
add a local common for multi-thread output of "Depth".

1 C $Header: /u/gcmpack/models/MITgcmUV/model/src/ini_masks_etc.F,v 1.21 2001/05/29 14:01:37 adcroft Exp $
2 C $Name: $
3
4 #include "CPP_OPTIONS.h"
5
6 CStartOfInterface
7 SUBROUTINE INI_MASKS_ETC( myThid )
8 C /==========================================================\
9 C | SUBROUTINE INI_MASKS_ETC |
10 C | o Initialise masks and topography factors |
11 C |==========================================================|
12 C | These arrays are used throughout the code and describe |
13 C | the topography of the domain through masks (0s and 1s) |
14 C | and fractional height factors (0<hFac<1). The latter |
15 C | distinguish between the lopped-cell and full-step |
16 C | topographic representations. |
17 C \==========================================================/
18 IMPLICIT NONE
19
20 C === Global variables ===
21 #include "SIZE.h"
22 #include "EEPARAMS.h"
23 #include "PARAMS.h"
24 #include "GRID.h"
25 #include "SURFACE.h"
26
27 C == Routine arguments ==
28 C myThid - Number of this instance of INI_MASKS_ETC
29 INTEGER myThid
30 CEndOfInterface
31
32 C == Local variables in common ==
33 C tmpfld - Temporary array used to compute & write Total Depth
34 C has to be in common for multi threading
35 COMMON / LOCAL_INI_MASKS_ETC / tmpfld
36 _RS tmpfld(1-OLx:sNx+OLx,1-OLy:sNy+OLy,nSx,nSy)
37
38 C == Local variables ==
39 C bi,bj - Loop counters
40 C I,J,K
41 INTEGER bi, bj
42 INTEGER I, J, K
43 #ifdef ALLOW_NONHYDROSTATIC
44 INTEGER Km1
45 _RL hFacUpper,hFacLower
46 #endif
47 _RL hFacCtmp
48 _RL hFacMnSz
49
50 C- Calculate lopping factor hFacC : over-estimate the part inside of the domain
51 C taking into account the lower_R Boundary (Bathymetrie / Top of Atmos)
52 DO bj=myByLo(myThid), myByHi(myThid)
53 DO bi=myBxLo(myThid), myBxHi(myThid)
54 DO K=1, Nr
55 hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) )
56 DO J=1-Oly,sNy+Oly
57 DO I=1-Olx,sNx+Olx
58 C o Non-dimensional distance between grid bound. and domain lower_R bound.
59 hFacCtmp = (rF(K)-R_low(I,J,bi,bj))*recip_drF(K)
60 C o Select between, closed, open or partial (0,1,0-1)
61 hFacCtmp=min( max( hFacCtmp, 0. _d 0) , 1. _d 0)
62 C o Impose minimum fraction and/or size (dimensional)
63 IF (hFacCtmp.LT.hFacMnSz) THEN
64 IF (hFacCtmp.LT.hFacMnSz*0.5) THEN
65 hFacC(I,J,K,bi,bj)=0.
66 ELSE
67 hFacC(I,J,K,bi,bj)=hFacMnSz
68 ENDIF
69 ELSE
70 hFacC(I,J,K,bi,bj)=hFacCtmp
71 ENDIF
72 ENDDO
73 ENDDO
74 ENDDO
75
76 C- Re-calculate lower-R Boundary position, taking into account hFacC
77 DO J=1-Oly,sNy+Oly
78 DO I=1-Olx,sNx+Olx
79 R_low(I,J,bi,bj) = rF(1)
80 DO K=Nr,1,-1
81 R_low(I,J,bi,bj) = R_low(I,J,bi,bj)
82 & - drF(k)*hFacC(I,J,K,bi,bj)
83 ENDDO
84 ENDDO
85 ENDDO
86 C - end bi,bj loops.
87 ENDDO
88 ENDDO
89
90 C- Calculate lopping factor hFacC : Remove part outside of the domain
91 C taking into account the Reference (=at rest) Surface Position Ro_surf
92 DO bj=myByLo(myThid), myByHi(myThid)
93 DO bi=myBxLo(myThid), myBxHi(myThid)
94 DO K=1, Nr
95 hFacMnSz=max( hFacMin, min(hFacMinDr*recip_drF(k),1. _d 0) )
96 DO J=1-Oly,sNy+Oly
97 DO I=1-Olx,sNx+Olx
98 C o Non-dimensional distance between grid boundary and model surface
99 hFacCtmp = (rF(k)-Ro_surf(I,J,bi,bj))*recip_drF(K)
100 C o Reduce the previous fraction : substract the outside part.
101 hFacCtmp = hFacC(I,J,K,bi,bj) - max( hFacCtmp, 0. _d 0)
102 C o set to zero if empty Column :
103 hFacCtmp = max( hFacCtmp, 0. _d 0)
104 C o Impose minimum fraction and/or size (dimensional)
105 IF (hFacCtmp.LT.hFacMnSz) THEN
106 IF (hFacCtmp.LT.hFacMnSz*0.5) THEN
107 hFacC(I,J,K,bi,bj)=0.
108 ELSE
109 hFacC(I,J,K,bi,bj)=hFacMnSz
110 ENDIF
111 ELSE
112 hFacC(I,J,K,bi,bj)=hFacCtmp
113 ENDIF
114 ENDDO
115 ENDDO
116 ENDDO
117
118 C- Re-calculate Reference surface position, taking into account hFacC
119 C initialize Total column fluid thickness and surface k index
120 DO J=1-Oly,sNy+Oly
121 DO I=1-Olx,sNx+Olx
122 tmpfld(I,J,bi,bj) = 0.
123 k_surf(I,J,bi,bj) = Nr
124 Ro_surf(I,J,bi,bj) = R_low(I,J,bi,bj)
125 DO K=Nr,1,-1
126 Ro_surf(I,J,bi,bj) = Ro_surf(I,J,bi,bj)
127 & + drF(k)*hFacC(I,J,K,bi,bj)
128 IF (hFacC(I,J,K,bi,bj).NE.0.) THEN
129 k_surf(I,J,bi,bj) = k
130 tmpfld(i,j,bi,bj) = tmpfld(i,j,bi,bj) + 1.
131 ENDIF
132 ENDDO
133 ENDDO
134 ENDDO
135 C - end bi,bj loops.
136 ENDDO
137 ENDDO
138
139 C CALL PLOT_FIELD_XYRS( tmpfld,
140 C & 'Model Depths K Index' , 1, myThid )
141 CALL PLOT_FIELD_XYRS(R_low,
142 & 'Model R_low (ini_masks_etc)', 1, myThid)
143 CALL PLOT_FIELD_XYRS(Ro_surf,
144 & 'Model Ro_surf (ini_masks_etc)', 1, myThid)
145
146 C Calculate quantities derived from XY depth map
147 DO bj = myByLo(myThid), myByHi(myThid)
148 DO bi = myBxLo(myThid), myBxHi(myThid)
149 DO j=1-Oly,sNy+Oly
150 DO i=1-Olx,sNx+Olx
151 C Total fluid column thickness (r_unit) :
152 c Rcolumn(i,j,bi,bj)= Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj)
153 tmpfld(i,j,bi,bj) = Ro_surf(i,j,bi,bj) - R_low(i,j,bi,bj)
154 C Inverse of fluid column thickness (1/r_unit)
155 IF ( tmpfld(i,j,bi,bj) .LE. 0. ) THEN
156 recip_Rcol(i,j,bi,bj) = 0.
157 ELSE
158 recip_Rcol(i,j,bi,bj) = 1. / tmpfld(i,j,bi,bj)
159 ENDIF
160 ENDDO
161 ENDDO
162 ENDDO
163 ENDDO
164 C _EXCH_XY_R4( recip_Rcol, myThid )
165
166 C hFacW and hFacS (at U and V points)
167 DO bj=myByLo(myThid), myByHi(myThid)
168 DO bi=myBxLo(myThid), myBxHi(myThid)
169 DO K=1, Nr
170 DO J=1,sNy
171 DO I=1,sNx
172 hFacW(I,J,K,bi,bj)=
173 & MIN(hFacC(I,J,K,bi,bj),hFacC(I-1,J,K,bi,bj))
174 hFacS(I,J,K,bi,bj)=
175 & MIN(hFacC(I,J,K,bi,bj),hFacC(I,J-1,K,bi,bj))
176 ENDDO
177 ENDDO
178 ENDDO
179 ENDDO
180 ENDDO
181 CALL EXCH_UV_XYZ_RS(hFacW,hFacS,.FALSE.,myThid)
182 C The following block allows thin walls representation of non-periodic
183 C boundaries such as happen on the lat-lon grid at the N/S poles.
184 C We should really supply a flag for doing this.
185 DO bj=myByLo(myThid), myByHi(myThid)
186 DO bi=myBxLo(myThid), myBxHi(myThid)
187 DO K=1, Nr
188 DO J=1-Oly,sNy+Oly
189 DO I=1-Olx,sNx+Olx
190 IF (DYG(I,J,bi,bj).EQ.0.) hFacW(I,J,K,bi,bj)=0.
191 IF (DXG(I,J,bi,bj).EQ.0.) hFacS(I,J,K,bi,bj)=0.
192 ENDDO
193 ENDDO
194 ENDDO
195 ENDDO
196 ENDDO
197
198 C- Write to disk: Total Column Thickness & hFac(C,W,S):
199 _BARRIER
200 _BEGIN_MASTER( myThid )
201 C CALL MDSWRITEFIELD( 'Depth', writeBinaryPrec, .TRUE.,
202 C & 'RS', 1, tmpfld, 1, -1, myThid )
203 CALL WRITE_FLD_XY_RS( 'Depth',' ',tmpfld,0,myThid)
204 CALL WRITE_FLD_XYZ_RS( 'hFacC',' ',hFacC,0,myThid)
205 CALL WRITE_FLD_XYZ_RS( 'hFacW',' ',hFacW,0,myThid)
206 CALL WRITE_FLD_XYZ_RS( 'hFacS',' ',hFacS,0,myThid)
207 _END_MASTER(myThid)
208
209 CALL PLOT_FIELD_XYZRS( hFacC, 'hFacC' , Nr, 1, myThid )
210 CALL PLOT_FIELD_XYZRS( hFacW, 'hFacW' , Nr, 1, myThid )
211 CALL PLOT_FIELD_XYZRS( hFacS, 'hFacS' , Nr, 1, myThid )
212
213 C Masks and reciprocals of hFac[CWS]
214 DO bj = myByLo(myThid), myByHi(myThid)
215 DO bi = myBxLo(myThid), myBxHi(myThid)
216 DO K=1,Nr
217 DO J=1-Oly,sNy+Oly
218 DO I=1-Olx,sNx+Olx
219 IF (HFacC(I,J,K,bi,bj) .NE. 0. ) THEN
220 recip_HFacC(I,J,K,bi,bj) = 1. / HFacC(I,J,K,bi,bj)
221 maskC(I,J,K,bi,bj) = 1.
222 ELSE
223 recip_HFacC(I,J,K,bi,bj) = 0.
224 maskC(I,J,K,bi,bj) = 0.
225 ENDIF
226 IF (HFacW(I,J,K,bi,bj) .NE. 0. ) THEN
227 recip_HFacW(I,J,K,bi,bj) = 1. / HFacW(I,J,K,bi,bj)
228 maskW(I,J,K,bi,bj) = 1.
229 ELSE
230 recip_HFacW(I,J,K,bi,bj) = 0.
231 maskW(I,J,K,bi,bj) = 0.
232 ENDIF
233 IF (HFacS(I,J,K,bi,bj) .NE. 0. ) THEN
234 recip_HFacS(I,J,K,bi,bj) = 1. / HFacS(I,J,K,bi,bj)
235 maskS(I,J,K,bi,bj) = 1.
236 ELSE
237 recip_HFacS(I,J,K,bi,bj) = 0.
238 maskS(I,J,K,bi,bj) = 0.
239 ENDIF
240 ENDDO
241 ENDDO
242 ENDDO
243 ENDDO
244 ENDDO
245 C _EXCH_XYZ_R4(recip_HFacC , myThid )
246 C _EXCH_XYZ_R4(recip_HFacW , myThid )
247 C _EXCH_XYZ_R4(recip_HFacS , myThid )
248 C _EXCH_XYZ_R4(maskW , myThid )
249 C _EXCH_XYZ_R4(maskS , myThid )
250
251 C Calculate recipricols grid lengths
252 DO bj = myByLo(myThid), myByHi(myThid)
253 DO bi = myBxLo(myThid), myBxHi(myThid)
254 DO J=1-Oly,sNy+Oly
255 DO I=1-Olx,sNx+Olx
256 IF ( dxG(I,J,bi,bj) .NE. 0. )
257 & recip_dxG(I,J,bi,bj)=1.d0/dxG(I,J,bi,bj)
258 IF ( dyG(I,J,bi,bj) .NE. 0. )
259 & recip_dyG(I,J,bi,bj)=1.d0/dyG(I,J,bi,bj)
260 IF ( dxC(I,J,bi,bj) .NE. 0. )
261 & recip_dxC(I,J,bi,bj)=1.d0/dxC(I,J,bi,bj)
262 IF ( dyC(I,J,bi,bj) .NE. 0. )
263 & recip_dyC(I,J,bi,bj)=1.d0/dyC(I,J,bi,bj)
264 IF ( dxF(I,J,bi,bj) .NE. 0. )
265 & recip_dxF(I,J,bi,bj)=1.d0/dxF(I,J,bi,bj)
266 IF ( dyF(I,J,bi,bj) .NE. 0. )
267 & recip_dyF(I,J,bi,bj)=1.d0/dyF(I,J,bi,bj)
268 IF ( dxV(I,J,bi,bj) .NE. 0. )
269 & recip_dxV(I,J,bi,bj)=1.d0/dxV(I,J,bi,bj)
270 IF ( dyU(I,J,bi,bj) .NE. 0. )
271 & recip_dyU(I,J,bi,bj)=1.d0/dyU(I,J,bi,bj)
272 IF ( rA(I,J,bi,bj) .NE. 0. )
273 & recip_rA(I,J,bi,bj)=1.d0/rA(I,J,bi,bj)
274 IF ( rAs(I,J,bi,bj) .NE. 0. )
275 & recip_rAs(I,J,bi,bj)=1.d0/rAs(I,J,bi,bj)
276 IF ( rAw(I,J,bi,bj) .NE. 0. )
277 & recip_rAw(I,J,bi,bj)=1.d0/rAw(I,J,bi,bj)
278 IF ( rAz(I,J,bi,bj) .NE. 0. )
279 & recip_rAz(I,J,bi,bj)=1.d0/rAz(I,J,bi,bj)
280 ENDDO
281 ENDDO
282 ENDDO
283 ENDDO
284 C Do not need these since above denominators are valid over full range
285 C _EXCH_XY_R4(recip_dxG, myThid )
286 C _EXCH_XY_R4(recip_dyG, myThid )
287 C _EXCH_XY_R4(recip_dxC, myThid )
288 C _EXCH_XY_R4(recip_dyC, myThid )
289 C _EXCH_XY_R4(recip_dxF, myThid )
290 C _EXCH_XY_R4(recip_dyF, myThid )
291 C _EXCH_XY_R4(recip_dxV, myThid )
292 C _EXCH_XY_R4(recip_dyU, myThid )
293 C _EXCH_XY_R4(recip_rAw, myThid )
294 C _EXCH_XY_R4(recip_rAs, myThid )
295
296 #ifdef ALLOW_NONHYDROSTATIC
297 C-- Calculate the reciprocal hfac distance/volume for W cells
298 DO bj = myByLo(myThid), myByHi(myThid)
299 DO bi = myBxLo(myThid), myBxHi(myThid)
300 DO K=1,Nr
301 Km1=max(K-1,1)
302 hFacUpper=drF(Km1)/(drF(Km1)+drF(K))
303 IF (Km1.EQ.K) hFacUpper=0.
304 hFacLower=drF(K)/(drF(Km1)+drF(K))
305 DO J=1-Oly,sNy+Oly
306 DO I=1-Olx,sNx+Olx
307 IF (hFacC(I,J,K,bi,bj).NE.0.) THEN
308 IF (hFacC(I,J,K,bi,bj).LE.0.5) THEN
309 recip_hFacU(I,J,K,bi,bj)=
310 & hFacUpper+hFacLower*hFacC(I,J,K,bi,bj)
311 ELSE
312 recip_hFacU(I,J,K,bi,bj)=1.
313 ENDIF
314 ELSE
315 recip_hFacU(I,J,K,bi,bj)=0.
316 ENDIF
317 IF (recip_hFacU(I,J,K,bi,bj).NE.0.)
318 & recip_hFacU(I,J,K,bi,bj)=1./recip_hFacU(I,J,K,bi,bj)
319 ENDDO
320 ENDDO
321 ENDDO
322 ENDDO
323 ENDDO
324 C _EXCH_XY_R4(recip_hFacU, myThid )
325 #endif
326 C
327 RETURN
328 END

  ViewVC Help
Powered by ViewVC 1.1.22