C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/ini_cartesian_grid.F,v 1.23 2011/12/12 19:01:01 jmc Exp $ C $Name: $ #include "CPP_OPTIONS.h" CBOP C !ROUTINE: INI_CARTESIAN_GRID C !INTERFACE: SUBROUTINE INI_CARTESIAN_GRID( myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE INI_CARTESIAN_GRID C | o Initialise model coordinate system C *==========================================================* C | The grid arrays, initialised here, are used throughout C | the code in evaluating gradients, integrals and spatial C | avarages. This routine is called separately by each C | thread and initialises only the region of the domain C | it is "responsible" for. C | Under the cartesian grid mode primitive distances C | in X and Y are in metres. Distance in Z are in m or Pa C | depending on the vertical gridding mode. C *==========================================================* C \ev C !USES: IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myThid :: my Thread Id Number INTEGER myThid C !LOCAL VARIABLES: C == Local variables == C bi,bj :: tile indices C i, j :: loop counters C lat :: Temporary variables used to hold latitude values. C dlat :: Temporary variables used to hold latitudes increment. C dlon :: Temporary variables used to hold longitude increment. C delXloc :: mesh spacing in X direction C delYloc :: mesh spacing in Y direction C xGloc :: mesh corner-point location (local "Long" real array type) C yGloc :: mesh corner-point location (local "Long" real array type) INTEGER bi, bj INTEGER i, j INTEGER gridNx, gridNy _RL lat, dlat, dlon C NOTICE the extended range of indices!! _RL delXloc(0-OLx:sNx+OLx) _RL delYloc(0-OLy:sNy+OLy) C NOTICE the extended range of indices!! _RL xGloc(1-OLx:sNx+OLx+1,1-OLy:sNy+OLy+1) _RL yGloc(1-OLx:sNx+OLx+1,1-OLy:sNy+OLy+1) CEOP C-- For each tile ... DO bj = myByLo(myThid), myByHi(myThid) DO bi = myBxLo(myThid), myBxHi(myThid) C-- set tile local mesh (same units as delX,deY) C corresponding to coordinates of cell corners for N+1 grid-lines CALL INI_LOCAL_GRID( O xGloc, yGloc, O delXloc, delYloc, O gridNx, gridNy, I bi, bj, myThid ) C-- Make a permanent copy of [xGloc,yGloc] in [xG,yG] DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx xG(i,j,bi,bj) = xGloc(i,j) yG(i,j,bi,bj) = yGloc(i,j) ENDDO ENDDO C-- Calculate [xC,yC], coordinates of cell centers DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx C by averaging xC(i,j,bi,bj) = 0.25 _d 0*( & xGloc(i,j)+xGloc(i+1,j)+xGloc(i,j+1)+xGloc(i+1,j+1) ) yC(i,j,bi,bj) = 0.25 _d 0*( & yGloc(i,j)+yGloc(i+1,j)+yGloc(i,j+1)+yGloc(i+1,j+1) ) ENDDO ENDDO C-- Calculate [dxF,dyF], lengths between cell faces (through center) DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx dxF(i,j,bi,bj) = delXloc(i) dyF(i,j,bi,bj) = delYloc(j) ENDDO ENDDO C-- Calculate [dxG,dyG], lengths along cell boundaries DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx dxG(i,j,bi,bj) = delXloc(i) dyG(i,j,bi,bj) = delYloc(j) ENDDO ENDDO C-- The following arrays are not defined in some parts of the halo C region. We set them to zero here for safety. If they are ever C referred to, especially in the denominator then it is a mistake! DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx dxC(i,j,bi,bj) = 0. dyC(i,j,bi,bj) = 0. dxV(i,j,bi,bj) = 0. dyU(i,j,bi,bj) = 0. rAw(i,j,bi,bj) = 0. rAs(i,j,bi,bj) = 0. ENDDO ENDDO C-- Calculate [dxC], zonal length between cell centers DO j=1-OLy,sNy+OLy DO i=1-OLx+1,sNx+OLx ! NOTE range dxC(i,j,bi,bj) = 0.5 _d 0*(dxF(i,j,bi,bj)+dxF(i-1,j,bi,bj)) ENDDO ENDDO C-- Calculate [dyC], meridional length between cell centers DO j=1-OLy+1,sNy+OLy ! NOTE range DO i=1-OLx,sNx+OLx dyC(i,j,bi,bj) = 0.5 _d 0*(dyF(i,j,bi,bj)+dyF(i,j-1,bi,bj)) ENDDO ENDDO C-- Calculate [dxV,dyU], length between velocity points (through corners) DO j=1-OLy+1,sNy+OLy ! NOTE range DO i=1-OLx+1,sNx+OLx ! NOTE range C by averaging (method I) dxV(i,j,bi,bj) = 0.5 _d 0*(dxG(i,j,bi,bj)+dxG(i-1,j,bi,bj)) dyU(i,j,bi,bj) = 0.5 _d 0*(dyG(i,j,bi,bj)+dyG(i,j-1,bi,bj)) C by averaging (method II) c dxV(i,j,bi,bj) = 0.5*(dxG(i,j,bi,bj)+dxG(i-1,j,bi,bj)) c dyU(i,j,bi,bj) = 0.5*(dyC(i,j,bi,bj)+dyC(i-1,j,bi,bj)) ENDDO ENDDO C-- Calculate vertical face area DO j=1-OLy,sNy+OLy DO i=1-OLx,sNx+OLx rA (i,j,bi,bj) = dxF(i,j,bi,bj)*dyF(i,j,bi,bj) rAw(i,j,bi,bj) = dxC(i,j,bi,bj)*dyG(i,j,bi,bj) rAs(i,j,bi,bj) = dxG(i,j,bi,bj)*dyC(i,j,bi,bj) rAz(i,j,bi,bj) = dxV(i,j,bi,bj)*dyU(i,j,bi,bj) C-- Set trigonometric terms & grid orientation: tanPhiAtU(i,j,bi,bj) = 0. tanPhiAtV(i,j,bi,bj) = 0. angleCosC(i,j,bi,bj) = 1. angleSinC(i,j,bi,bj) = 0. ENDDO ENDDO C-- Cosine(lat) scaling DO j=1-OLy,sNy+OLy cosFacU(j,bi,bj) = 1. cosFacV(j,bi,bj) = 1. sqcosFacU(j,bi,bj)=1. sqcosFacV(j,bi,bj)=1. ENDDO C-- end bi,bj loops ENDDO ENDDO RETURN END