C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/ini_cartesian_grid.F,v 1.22 2010/04/17 18:25:12 jmc Exp $ C $Name: $ c#include "PACKAGES_CONFIG.h" #include "CPP_OPTIONS.h" CBOP C !ROUTINE: INI_CARTESIAN_GRID C !INTERFACE: SUBROUTINE INI_CARTESIAN_GRID( myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE INI_CARTESIAN_GRID C | o Initialise model coordinate system C *==========================================================* C | The grid arrays, initialised here, are used throughout C | the code in evaluating gradients, integrals and spatial C | avarages. This routine C | is called separately by each thread and initialises only C | the region of the domain it is "responsible" for. C | Notes: C | Two examples are included. One illustrates the C | initialisation of a cartesian grid (this routine). C | The other shows the C | inialisation of a spherical polar grid. Other orthonormal C | grids can be fitted into this design. In this case C | custom metric terms also need adding to account for the C | projections of velocity vectors onto these grids. C | The structure used here also makes it possible to C | implement less regular grid mappings. In particular C | o Schemes which leave out blocks of the domain that are C | all land could be supported. C | o Multi-level schemes such as icosohedral or cubic C | grid projections onto a sphere can also be fitted C | within the strategy we use. C | Both of the above also require modifying the support C | routines that map computational blocks to simulation C | domain blocks. C | Under the cartesian grid mode primitive distances in X C | and Y are in metres. Disktance in Z are in m or Pa C | depending on the vertical gridding mode. C *==========================================================* C \ev C !USES: IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" c#ifdef ALLOW_EXCH2 c#include "W2_EXCH2_SIZE.h" c#include "W2_EXCH2_TOPOLOGY.h" c#include "W2_EXCH2_PARAMS.h" c#endif /* ALLOW_EXCH2 */ C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myThid :: Number of this instance of INI_CARTESIAN_GRID INTEGER myThid C !LOCAL VARIABLES: C == Local variables == INTEGER iG, jG, bi, bj, i, j _RL xG0, yG0 C "Long" real for temporary coordinate calculation C NOTICE the extended range of indices!! _RL xGloc(1-Olx:sNx+Olx+1,1-Oly:sNy+Oly+1) _RL yGloc(1-Olx:sNx+Olx+1,1-Oly:sNy+Oly+1) C These functions return the "global" index with valid values beyond C halo regions INTEGER iGl,jGl iGl(i,bi) = 1+MOD(myXGlobalLo-1+(bi-1)*sNx+i+Olx*Nx-1,Nx) jGl(j,bj) = 1+MOD(myYGlobalLo-1+(bj-1)*sNy+j+Oly*Ny-1,Ny) c#ifdef ALLOW_EXCH2 c INTEGER tN c#endif /* ALLOW_EXCH2 */ CEOP C For each tile ... DO bj = myByLo(myThid), myByHi(myThid) DO bi = myBxLo(myThid), myBxHi(myThid) C-- "Global" index (place holder) jG = myYGlobalLo + (bj-1)*sNy iG = myXGlobalLo + (bi-1)*sNx c#ifdef ALLOW_EXCH2 c IF ( W2_useE2ioLayOut ) THEN cC- note: does not work for non-uniform delX or delY c tN = W2_myTileList(bi,bj) c iG = exch2_txGlobalo(tN) c jG = exch2_tyGlobalo(tN) c ENDIF c#endif /* ALLOW_EXCH2 */ C-- First find coordinate of tile corner (meaning outer corner of halo) xG0 = xgOrigin C Find the X-coordinate of the outer grid-line of the "real" tile DO i=1, iG-1 xG0 = xG0 + delX(i) ENDDO C Back-step to the outer grid-line of the "halo" region DO i=1, Olx xG0 = xG0 - delX( 1+MOD(Olx*Nx-1+iG-i,Nx) ) ENDDO C Find the Y-coordinate of the outer grid-line of the "real" tile yG0 = ygOrigin DO j=1, jG-1 yG0 = yG0 + delY(j) ENDDO C Back-step to the outer grid-line of the "halo" region DO j=1, Oly yG0 = yG0 - delY( 1+MOD(Oly*Ny-1+jG-j,Ny) ) ENDDO C-- Calculate coordinates of cell corners for N+1 grid-lines DO j=1-Oly,sNy+Oly +1 xGloc(1-Olx,j) = xG0 DO i=1-Olx,sNx+Olx c xGloc(i+1,j) = xGloc(i,j) + delX(1+mod(Nx-1+iG-1+i,Nx)) xGloc(i+1,j) = xGloc(i,j) + delX( iGl(i,bi) ) ENDDO ENDDO DO i=1-Olx,sNx+Olx +1 yGloc(i,1-Oly) = yG0 DO j=1-Oly,sNy+Oly c yGloc(i,j+1) = yGloc(i,j) + delY(1+mod(Ny-1+jG-1+j,Ny)) yGloc(i,j+1) = yGloc(i,j) + delY( jGl(j,bj) ) ENDDO ENDDO C-- Make a permanent copy of [xGloc,yGloc] in [xG,yG] DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx xG(i,j,bi,bj) = xGloc(i,j) yG(i,j,bi,bj) = yGloc(i,j) ENDDO ENDDO C-- Calculate [xC,yC], coordinates of cell centers DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx C by averaging xC(i,j,bi,bj) = 0.25 _d 0*( & xGloc(i,j)+xGloc(i+1,j)+xGloc(i,j+1)+xGloc(i+1,j+1) ) yC(i,j,bi,bj) = 0.25 _d 0*( & yGloc(i,j)+yGloc(i+1,j)+yGloc(i,j+1)+yGloc(i+1,j+1) ) ENDDO ENDDO C-- Calculate [dxF,dyF], lengths between cell faces (through center) DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx dxF(i,j,bi,bj) = delX( iGl(i,bi) ) dyF(i,j,bi,bj) = delY( jGl(j,bj) ) ENDDO ENDDO C-- Calculate [dxG,dyG], lengths along cell boundaries DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx dxG(i,j,bi,bj) = delX( iGl(i,bi) ) dyG(i,j,bi,bj) = delY( jGl(j,bj) ) ENDDO ENDDO C-- The following arrays are not defined in some parts of the halo C region. We set them to zero here for safety. If they are ever C referred to, especially in the denominator then it is a mistake! DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx dxC(i,j,bi,bj) = 0. dyC(i,j,bi,bj) = 0. dxV(i,j,bi,bj) = 0. dyU(i,j,bi,bj) = 0. rAw(i,j,bi,bj) = 0. rAs(i,j,bi,bj) = 0. ENDDO ENDDO C-- Calculate [dxC], zonal length between cell centers DO j=1-Oly,sNy+Oly DO i=1-Olx+1,sNx+Olx ! NOTE range dxC(i,j,bi,bj) = 0.5 _d 0*(dxF(i,j,bi,bj)+dxF(i-1,j,bi,bj)) ENDDO ENDDO C-- Calculate [dyC], meridional length between cell centers DO j=1-Oly+1,sNy+Oly ! NOTE range DO i=1-Olx,sNx+Olx dyC(i,j,bi,bj) = 0.5 _d 0*(dyF(i,j,bi,bj)+dyF(i,j-1,bi,bj)) ENDDO ENDDO C-- Calculate [dxV,dyU], length between velocity points (through corners) DO j=1-Oly+1,sNy+Oly ! NOTE range DO i=1-Olx+1,sNx+Olx ! NOTE range C by averaging (method I) dxV(i,j,bi,bj) = 0.5 _d 0*(dxG(i,j,bi,bj)+dxG(i-1,j,bi,bj)) dyU(i,j,bi,bj) = 0.5 _d 0*(dyG(i,j,bi,bj)+dyG(i,j-1,bi,bj)) C by averaging (method II) c dxV(i,j,bi,bj) = 0.5*(dxG(i,j,bi,bj)+dxG(i-1,j,bi,bj)) c dyU(i,j,bi,bj) = 0.5*(dyC(i,j,bi,bj)+dyC(i-1,j,bi,bj)) ENDDO ENDDO C-- Calculate vertical face area DO j=1-Oly,sNy+Oly DO i=1-Olx,sNx+Olx rA (i,j,bi,bj) = dxF(i,j,bi,bj)*dyF(i,j,bi,bj) rAw(i,j,bi,bj) = dxC(i,j,bi,bj)*dyG(i,j,bi,bj) rAs(i,j,bi,bj) = dxG(i,j,bi,bj)*dyC(i,j,bi,bj) rAz(i,j,bi,bj) = dxV(i,j,bi,bj)*dyU(i,j,bi,bj) C-- Set trigonometric terms & grid orientation: tanPhiAtU(i,j,bi,bj) = 0. tanPhiAtV(i,j,bi,bj) = 0. angleCosC(i,j,bi,bj) = 1. angleSinC(i,j,bi,bj) = 0. ENDDO ENDDO C-- Cosine(lat) scaling DO j=1-OLy,sNy+OLy cosFacU(j,bi,bj)=1. cosFacV(j,bi,bj)=1. sqcosFacU(j,bi,bj)=1. sqcosFacV(j,bi,bj)=1. ENDDO C-- end bi,bj loops ENDDO ENDDO C-- Set default (=whole domain) for where relaxation to climatology applies _BEGIN_MASTER(myThid) IF ( latBandClimRelax.EQ.UNSET_RL ) THEN latBandClimRelax = 0. DO j=1,Ny latBandClimRelax = latBandClimRelax + delY(j) ENDDO latBandClimRelax = latBandClimRelax*3. _d 0 ENDIF _END_MASTER(myThid) RETURN END