/[MITgcm]/MITgcm/model/src/ini_cartesian_grid.F
ViewVC logotype

Contents of /MITgcm/model/src/ini_cartesian_grid.F

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.22 - (show annotations) (download)
Sat Apr 17 18:25:12 2010 UTC (14 years, 1 month ago) by jmc
Branch: MAIN
CVS Tags: checkpoint62v, checkpoint62u, checkpoint62t, checkpoint62s, checkpoint62r, checkpoint62q, checkpoint62p, checkpoint62g, checkpoint62f, checkpoint62k, checkpoint62j, checkpoint62i, checkpoint62h, checkpoint62o, checkpoint62n, checkpoint62m, checkpoint62l, checkpoint62w, checkpoint62z, checkpoint62y, checkpoint62x, checkpoint63, checkpoint63d, checkpoint63e, checkpoint63f, checkpoint63a, checkpoint63b, checkpoint63c
Changes since 1.21: +87 -69 lines
add code for Exch2 IO layout:
 (not always compatible with delX,delY setting; commented out for now)
add some _d 0 ; clean-up variable description.

1 C $Header: /u/gcmpack/MITgcm/model/src/ini_cartesian_grid.F,v 1.21 2009/01/27 15:35:27 jmc Exp $
2 C $Name: $
3
4 c#include "PACKAGES_CONFIG.h"
5 #include "CPP_OPTIONS.h"
6
7 CBOP
8 C !ROUTINE: INI_CARTESIAN_GRID
9 C !INTERFACE:
10 SUBROUTINE INI_CARTESIAN_GRID( myThid )
11
12 C !DESCRIPTION: \bv
13 C *==========================================================*
14 C | SUBROUTINE INI_CARTESIAN_GRID
15 C | o Initialise model coordinate system
16 C *==========================================================*
17 C | The grid arrays, initialised here, are used throughout
18 C | the code in evaluating gradients, integrals and spatial
19 C | avarages. This routine
20 C | is called separately by each thread and initialises only
21 C | the region of the domain it is "responsible" for.
22 C | Notes:
23 C | Two examples are included. One illustrates the
24 C | initialisation of a cartesian grid (this routine).
25 C | The other shows the
26 C | inialisation of a spherical polar grid. Other orthonormal
27 C | grids can be fitted into this design. In this case
28 C | custom metric terms also need adding to account for the
29 C | projections of velocity vectors onto these grids.
30 C | The structure used here also makes it possible to
31 C | implement less regular grid mappings. In particular
32 C | o Schemes which leave out blocks of the domain that are
33 C | all land could be supported.
34 C | o Multi-level schemes such as icosohedral or cubic
35 C | grid projections onto a sphere can also be fitted
36 C | within the strategy we use.
37 C | Both of the above also require modifying the support
38 C | routines that map computational blocks to simulation
39 C | domain blocks.
40 C | Under the cartesian grid mode primitive distances in X
41 C | and Y are in metres. Disktance in Z are in m or Pa
42 C | depending on the vertical gridding mode.
43 C *==========================================================*
44 C \ev
45
46 C !USES:
47 IMPLICIT NONE
48 C === Global variables ===
49 #include "SIZE.h"
50 #include "EEPARAMS.h"
51 #include "PARAMS.h"
52 #include "GRID.h"
53 c#ifdef ALLOW_EXCH2
54 c#include "W2_EXCH2_SIZE.h"
55 c#include "W2_EXCH2_TOPOLOGY.h"
56 c#include "W2_EXCH2_PARAMS.h"
57 c#endif /* ALLOW_EXCH2 */
58
59 C !INPUT/OUTPUT PARAMETERS:
60 C == Routine arguments ==
61 C myThid :: Number of this instance of INI_CARTESIAN_GRID
62 INTEGER myThid
63
64 C !LOCAL VARIABLES:
65 C == Local variables ==
66 INTEGER iG, jG, bi, bj, i, j
67 _RL xG0, yG0
68 C "Long" real for temporary coordinate calculation
69 C NOTICE the extended range of indices!!
70 _RL xGloc(1-Olx:sNx+Olx+1,1-Oly:sNy+Oly+1)
71 _RL yGloc(1-Olx:sNx+Olx+1,1-Oly:sNy+Oly+1)
72 C These functions return the "global" index with valid values beyond
73 C halo regions
74 INTEGER iGl,jGl
75 iGl(i,bi) = 1+MOD(myXGlobalLo-1+(bi-1)*sNx+i+Olx*Nx-1,Nx)
76 jGl(j,bj) = 1+MOD(myYGlobalLo-1+(bj-1)*sNy+j+Oly*Ny-1,Ny)
77 c#ifdef ALLOW_EXCH2
78 c INTEGER tN
79 c#endif /* ALLOW_EXCH2 */
80 CEOP
81
82 C For each tile ...
83 DO bj = myByLo(myThid), myByHi(myThid)
84 DO bi = myBxLo(myThid), myBxHi(myThid)
85
86 C-- "Global" index (place holder)
87 jG = myYGlobalLo + (bj-1)*sNy
88 iG = myXGlobalLo + (bi-1)*sNx
89 c#ifdef ALLOW_EXCH2
90 c IF ( W2_useE2ioLayOut ) THEN
91 cC- note: does not work for non-uniform delX or delY
92 c tN = W2_myTileList(bi,bj)
93 c iG = exch2_txGlobalo(tN)
94 c jG = exch2_tyGlobalo(tN)
95 c ENDIF
96 c#endif /* ALLOW_EXCH2 */
97
98 C-- First find coordinate of tile corner (meaning outer corner of halo)
99 xG0 = xgOrigin
100 C Find the X-coordinate of the outer grid-line of the "real" tile
101 DO i=1, iG-1
102 xG0 = xG0 + delX(i)
103 ENDDO
104 C Back-step to the outer grid-line of the "halo" region
105 DO i=1, Olx
106 xG0 = xG0 - delX( 1+MOD(Olx*Nx-1+iG-i,Nx) )
107 ENDDO
108 C Find the Y-coordinate of the outer grid-line of the "real" tile
109 yG0 = ygOrigin
110 DO j=1, jG-1
111 yG0 = yG0 + delY(j)
112 ENDDO
113 C Back-step to the outer grid-line of the "halo" region
114 DO j=1, Oly
115 yG0 = yG0 - delY( 1+MOD(Oly*Ny-1+jG-j,Ny) )
116 ENDDO
117
118 C-- Calculate coordinates of cell corners for N+1 grid-lines
119 DO j=1-Oly,sNy+Oly +1
120 xGloc(1-Olx,j) = xG0
121 DO i=1-Olx,sNx+Olx
122 c xGloc(i+1,j) = xGloc(i,j) + delX(1+mod(Nx-1+iG-1+i,Nx))
123 xGloc(i+1,j) = xGloc(i,j) + delX( iGl(i,bi) )
124 ENDDO
125 ENDDO
126 DO i=1-Olx,sNx+Olx +1
127 yGloc(i,1-Oly) = yG0
128 DO j=1-Oly,sNy+Oly
129 c yGloc(i,j+1) = yGloc(i,j) + delY(1+mod(Ny-1+jG-1+j,Ny))
130 yGloc(i,j+1) = yGloc(i,j) + delY( jGl(j,bj) )
131 ENDDO
132 ENDDO
133
134 C-- Make a permanent copy of [xGloc,yGloc] in [xG,yG]
135 DO j=1-Oly,sNy+Oly
136 DO i=1-Olx,sNx+Olx
137 xG(i,j,bi,bj) = xGloc(i,j)
138 yG(i,j,bi,bj) = yGloc(i,j)
139 ENDDO
140 ENDDO
141
142 C-- Calculate [xC,yC], coordinates of cell centers
143 DO j=1-Oly,sNy+Oly
144 DO i=1-Olx,sNx+Olx
145 C by averaging
146 xC(i,j,bi,bj) = 0.25 _d 0*(
147 & xGloc(i,j)+xGloc(i+1,j)+xGloc(i,j+1)+xGloc(i+1,j+1) )
148 yC(i,j,bi,bj) = 0.25 _d 0*(
149 & yGloc(i,j)+yGloc(i+1,j)+yGloc(i,j+1)+yGloc(i+1,j+1) )
150 ENDDO
151 ENDDO
152
153 C-- Calculate [dxF,dyF], lengths between cell faces (through center)
154 DO j=1-Oly,sNy+Oly
155 DO i=1-Olx,sNx+Olx
156 dxF(i,j,bi,bj) = delX( iGl(i,bi) )
157 dyF(i,j,bi,bj) = delY( jGl(j,bj) )
158 ENDDO
159 ENDDO
160
161 C-- Calculate [dxG,dyG], lengths along cell boundaries
162 DO j=1-Oly,sNy+Oly
163 DO i=1-Olx,sNx+Olx
164 dxG(i,j,bi,bj) = delX( iGl(i,bi) )
165 dyG(i,j,bi,bj) = delY( jGl(j,bj) )
166 ENDDO
167 ENDDO
168
169 C-- The following arrays are not defined in some parts of the halo
170 C region. We set them to zero here for safety. If they are ever
171 C referred to, especially in the denominator then it is a mistake!
172 DO j=1-Oly,sNy+Oly
173 DO i=1-Olx,sNx+Olx
174 dxC(i,j,bi,bj) = 0.
175 dyC(i,j,bi,bj) = 0.
176 dxV(i,j,bi,bj) = 0.
177 dyU(i,j,bi,bj) = 0.
178 rAw(i,j,bi,bj) = 0.
179 rAs(i,j,bi,bj) = 0.
180 ENDDO
181 ENDDO
182
183 C-- Calculate [dxC], zonal length between cell centers
184 DO j=1-Oly,sNy+Oly
185 DO i=1-Olx+1,sNx+Olx ! NOTE range
186 dxC(i,j,bi,bj) = 0.5 _d 0*(dxF(i,j,bi,bj)+dxF(i-1,j,bi,bj))
187 ENDDO
188 ENDDO
189
190 C-- Calculate [dyC], meridional length between cell centers
191 DO j=1-Oly+1,sNy+Oly ! NOTE range
192 DO i=1-Olx,sNx+Olx
193 dyC(i,j,bi,bj) = 0.5 _d 0*(dyF(i,j,bi,bj)+dyF(i,j-1,bi,bj))
194 ENDDO
195 ENDDO
196
197 C-- Calculate [dxV,dyU], length between velocity points (through corners)
198 DO j=1-Oly+1,sNy+Oly ! NOTE range
199 DO i=1-Olx+1,sNx+Olx ! NOTE range
200 C by averaging (method I)
201 dxV(i,j,bi,bj) = 0.5 _d 0*(dxG(i,j,bi,bj)+dxG(i-1,j,bi,bj))
202 dyU(i,j,bi,bj) = 0.5 _d 0*(dyG(i,j,bi,bj)+dyG(i,j-1,bi,bj))
203 C by averaging (method II)
204 c dxV(i,j,bi,bj) = 0.5*(dxG(i,j,bi,bj)+dxG(i-1,j,bi,bj))
205 c dyU(i,j,bi,bj) = 0.5*(dyC(i,j,bi,bj)+dyC(i-1,j,bi,bj))
206 ENDDO
207 ENDDO
208
209 C-- Calculate vertical face area
210 DO j=1-Oly,sNy+Oly
211 DO i=1-Olx,sNx+Olx
212 rA (i,j,bi,bj) = dxF(i,j,bi,bj)*dyF(i,j,bi,bj)
213 rAw(i,j,bi,bj) = dxC(i,j,bi,bj)*dyG(i,j,bi,bj)
214 rAs(i,j,bi,bj) = dxG(i,j,bi,bj)*dyC(i,j,bi,bj)
215 rAz(i,j,bi,bj) = dxV(i,j,bi,bj)*dyU(i,j,bi,bj)
216 C-- Set trigonometric terms & grid orientation:
217 tanPhiAtU(i,j,bi,bj) = 0.
218 tanPhiAtV(i,j,bi,bj) = 0.
219 angleCosC(i,j,bi,bj) = 1.
220 angleSinC(i,j,bi,bj) = 0.
221 ENDDO
222 ENDDO
223
224 C-- Cosine(lat) scaling
225 DO j=1-OLy,sNy+OLy
226 cosFacU(j,bi,bj)=1.
227 cosFacV(j,bi,bj)=1.
228 sqcosFacU(j,bi,bj)=1.
229 sqcosFacV(j,bi,bj)=1.
230 ENDDO
231
232 C-- end bi,bj loops
233 ENDDO
234 ENDDO
235
236 C-- Set default (=whole domain) for where relaxation to climatology applies
237 _BEGIN_MASTER(myThid)
238 IF ( latBandClimRelax.EQ.UNSET_RL ) THEN
239 latBandClimRelax = 0.
240 DO j=1,Ny
241 latBandClimRelax = latBandClimRelax + delY(j)
242 ENDDO
243 latBandClimRelax = latBandClimRelax*3. _d 0
244 ENDIF
245 _END_MASTER(myThid)
246
247 RETURN
248 END

  ViewVC Help
Powered by ViewVC 1.1.22