C $Header: /home/ubuntu/mnt/e9_copy/MITgcm/model/src/ini_cartesian_grid.F,v 1.20 2006/10/17 18:52:34 jmc Exp $ C $Name: $ #include "CPP_OPTIONS.h" CBOP C !ROUTINE: INI_CARTESIAN_GRID C !INTERFACE: SUBROUTINE INI_CARTESIAN_GRID( myThid ) C !DESCRIPTION: \bv C *==========================================================* C | SUBROUTINE INI_CARTESIAN_GRID C | o Initialise model coordinate system C *==========================================================* C | The grid arrays, initialised here, are used throughout C | the code in evaluating gradients, integrals and spatial C | avarages. This routine C | is called separately by each thread and initialises only C | the region of the domain it is "responsible" for. C | Notes: C | Two examples are included. One illustrates the C | initialisation of a cartesian grid (this routine). C | The other shows the C | inialisation of a spherical polar grid. Other orthonormal C | grids can be fitted into this design. In this case C | custom metric terms also need adding to account for the C | projections of velocity vectors onto these grids. C | The structure used here also makes it possible to C | implement less regular grid mappings. In particular C | o Schemes which leave out blocks of the domain that are C | all land could be supported. C | o Multi-level schemes such as icosohedral or cubic C | grid projections onto a sphere can also be fitted C | within the strategy we use. C | Both of the above also require modifying the support C | routines that map computational blocks to simulation C | domain blocks. C | Under the cartesian grid mode primitive distances in X C | and Y are in metres. Disktance in Z are in m or Pa C | depending on the vertical gridding mode. C *==========================================================* C \ev C !USES: IMPLICIT NONE C === Global variables === #include "SIZE.h" #include "EEPARAMS.h" #include "PARAMS.h" #include "GRID.h" C !INPUT/OUTPUT PARAMETERS: C == Routine arguments == C myThid - Number of this instance of INI_CARTESIAN_GRID INTEGER myThid C !LOCAL VARIABLES: C == Local variables == INTEGER iG, jG, bi, bj, I, J _RL xG0, yG0 C "Long" real for temporary coordinate calculation C NOTICE the extended range of indices!! _RL xGloc(1-Olx:sNx+Olx+1,1-Oly:sNy+Oly+1) _RL yGloc(1-Olx:sNx+Olx+1,1-Oly:sNy+Oly+1) C These functions return the "global" index with valid values beyond C halo regions INTEGER iGl,jGl iGl(I,bi) = 1+mod(myXGlobalLo-1+(bi-1)*sNx+I+Olx*Nx-1,Nx) jGl(J,bj) = 1+mod(myYGlobalLo-1+(bj-1)*sNy+J+Oly*Ny-1,Ny) CEOP C For each tile ... DO bj = myByLo(myThid), myByHi(myThid) DO bi = myBxLo(myThid), myBxHi(myThid) C-- "Global" index (place holder) jG = myYGlobalLo + (bj-1)*sNy iG = myXGlobalLo + (bi-1)*sNx C-- First find coordinate of tile corner (meaning outer corner of halo) xG0 = 0. C Find the X-coordinate of the outer grid-line of the "real" tile DO i=1, iG-1 xG0 = xG0 + delX(i) ENDDO C Back-step to the outer grid-line of the "halo" region DO i=1, Olx xG0 = xG0 - delX( 1+mod(Olx*Nx-1+iG-i,Nx) ) ENDDO C Find the Y-coordinate of the outer grid-line of the "real" tile yG0 = 0. DO j=1, jG-1 yG0 = yG0 + delY(j) ENDDO C Back-step to the outer grid-line of the "halo" region DO j=1, Oly yG0 = yG0 - delY( 1+mod(Oly*Ny-1+jG-j,Ny) ) ENDDO C-- Calculate coordinates of cell corners for N+1 grid-lines DO J=1-Oly,sNy+Oly +1 xGloc(1-Olx,J) = xG0 DO I=1-Olx,sNx+Olx c xGloc(I+1,J) = xGloc(I,J) + delX(1+mod(Nx-1+iG-1+i,Nx)) xGloc(I+1,J) = xGloc(I,J) + delX( iGl(I,bi) ) ENDDO ENDDO DO I=1-Olx,sNx+Olx +1 yGloc(I,1-Oly) = yG0 DO J=1-Oly,sNy+Oly c yGloc(I,J+1) = yGloc(I,J) + delY(1+mod(Ny-1+jG-1+j,Ny)) yGloc(I,J+1) = yGloc(I,J) + delY( jGl(J,bj) ) ENDDO ENDDO C-- Make a permanent copy of [xGloc,yGloc] in [xG,yG] DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx xG(I,J,bi,bj) = xGloc(I,J) yG(I,J,bi,bj) = yGloc(I,J) ENDDO ENDDO C-- Calculate [xC,yC], coordinates of cell centers DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx C by averaging xC(I,J,bi,bj) = 0.25*( & xGloc(I,J)+xGloc(I+1,J)+xGloc(I,J+1)+xGloc(I+1,J+1) ) yC(I,J,bi,bj) = 0.25*( & yGloc(I,J)+yGloc(I+1,J)+yGloc(I,J+1)+yGloc(I+1,J+1) ) ENDDO ENDDO C-- Calculate [dxF,dyF], lengths between cell faces (through center) DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx dXF(I,J,bi,bj) = delX( iGl(I,bi) ) dYF(I,J,bi,bj) = delY( jGl(J,bj) ) ENDDO ENDDO C-- Calculate [dxG,dyG], lengths along cell boundaries DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx dXG(I,J,bi,bj) = delX( iGl(I,bi) ) dYG(I,J,bi,bj) = delY( jGl(J,bj) ) ENDDO ENDDO C-- The following arrays are not defined in some parts of the halo C region. We set them to zero here for safety. If they are ever C referred to, especially in the denominator then it is a mistake! DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx dXC(I,J,bi,bj) = 0. dYC(I,J,bi,bj) = 0. dXV(I,J,bi,bj) = 0. dYU(I,J,bi,bj) = 0. rAw(I,J,bi,bj) = 0. rAs(I,J,bi,bj) = 0. ENDDO ENDDO C-- Calculate [dxC], zonal length between cell centers DO J=1-Oly,sNy+Oly DO I=1-Olx+1,sNx+Olx ! NOTE range dXC(I,J,bi,bj) = 0.5D0*(dXF(I,J,bi,bj)+dXF(I-1,J,bi,bj)) ENDDO ENDDO C-- Calculate [dyC], meridional length between cell centers DO J=1-Oly+1,sNy+Oly ! NOTE range DO I=1-Olx,sNx+Olx dYC(I,J,bi,bj) = 0.5*(dYF(I,J,bi,bj)+dYF(I,J-1,bi,bj)) ENDDO ENDDO C-- Calculate [dxV,dyU], length between velocity points (through corners) DO J=1-Oly+1,sNy+Oly ! NOTE range DO I=1-Olx+1,sNx+Olx ! NOTE range C by averaging (method I) dXV(I,J,bi,bj) = 0.5*(dXG(I,J,bi,bj)+dXG(I-1,J,bi,bj)) dYU(I,J,bi,bj) = 0.5*(dYG(I,J,bi,bj)+dYG(I,J-1,bi,bj)) C by averaging (method II) c dXV(I,J,bi,bj) = 0.5*(dXG(I,J,bi,bj)+dXG(I-1,J,bi,bj)) c dYU(I,J,bi,bj) = 0.5*(dYC(I,J,bi,bj)+dYC(I-1,J,bi,bj)) ENDDO ENDDO C-- Calculate vertical face area DO J=1-Oly,sNy+Oly DO I=1-Olx,sNx+Olx rA (I,J,bi,bj) = dxF(I,J,bi,bj)*dyF(I,J,bi,bj) rAw(I,J,bi,bj) = dxC(I,J,bi,bj)*dyG(I,J,bi,bj) rAs(I,J,bi,bj) = dxG(I,J,bi,bj)*dyC(I,J,bi,bj) rAz(I,J,bi,bj) = dxV(I,J,bi,bj)*dyU(I,J,bi,bj) C-- Set trigonometric terms & grid orientation: tanPhiAtU(I,J,bi,bj) = 0. tanPhiAtV(I,J,bi,bj) = 0. angleCosC(I,J,bi,bj) = 1. angleSinC(I,J,bi,bj) = 0. ENDDO ENDDO C-- Cosine(lat) scaling DO J=1-OLy,sNy+OLy cosFacU(J,bi,bj)=1. cosFacV(J,bi,bj)=1. sqcosFacU(J,bi,bj)=1. sqcosFacV(J,bi,bj)=1. ENDDO ENDDO ! bi ENDDO ! bj C-- Set default (=whole domain) for where relaxation to climatology applies _BEGIN_MASTER(myThid) IF ( latBandClimRelax.EQ.UNSET_RL ) THEN latBandClimRelax = 0. DO j=1,Ny latBandClimRelax = latBandClimRelax + delY(j) ENDDO latBandClimRelax = latBandClimRelax*3. _d 0 ENDIF _END_MASTER(myThid) RETURN END